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Preface

The damage to the ecological foundation essential for sustainable advances in

productivity led to the onset of fatigue in Green Revolution. Scientific principles

of soil and plant health management are being developed in order to sustain the

benefits of enhanced productivity over long periods. Therefore, amazing gains and

phenomenal increase have been observed in crop productivity by the use of

effective microorganisms (plant growth and health-supporting bacteria) and

practices. The agricultural crops which are a major source of food and nutrition

are of immense importance to meet out the requirements of burgeoning human

population. The productivity of the crops both in terms of quality and quantity of

food is of paramount importance. Keeping in view of our immediate and long-term

needs, the role of beneficial bacteria in agricultural–biological issues is envisaged.

The book entitled “Bacteria in Agrobiology: Crop Productivity” contains 19

chapters that cover multiple facets of contribution of the microbial attributes in

addressing the crop’s productivity that advance in perpetuity without

accompanying ecological harm. Exploitation of endophytic, root-nodulating, and

rhizospheric bacteria having beneficial plant growth-promoting and health-

supporting characteristics proved significant in low-input food, forage, and nonfood

crops for sustainable agricultural system. On one hand, beneficial bacteria also

provide improvement in the growth of medicinal plants grown commercially, while

on the other hand, also proved to be significant in adaptation of psammophytes

(plants grown in sand dunes) to nutrient-limited sand dune ecosystem. Plant-

associated bacteria including indigenous rhizobia and their bioformulations impart

productivity enhancement in rice, banana, chickpea, and some common legumes

cultivated at high altitude of western Himalayas. PGPB-mediated siderophores

have indirect contribution to successful plant growth promotion in order to achieve

maximum productivity, while inoculation of bacteria increasing uptake and mobi-

lization of nutrients aiding cereal biofortification has direct contribution to the

same. Other topics discussed in the book include the priming as a suitable strategy

to induce plant defense responses resulting in induced systemic resistance that

impart plant immunity, PGPR secreting volatile and nonvolatile substances,

exopolysaccharides, PGPR adoption to heavy metal tolerance, and blending
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of plant microbial remediation as one of the given cleanup processes for

amalgamated chemo-remediation through rhizobacterial interactions in crop

improvement.

We trust this book will be useful for researchers, teachers, students, and policy

makers but also for those who are interested in the subjects of plant sciences,

microbiology, phytopathology, ecology, environmental science, and agricultural

sciences.

We would like to express our gratitude to all the subject experts and reviewers

for their masterpiece scholarly contributions. Assistance rendered by our research

scholars is thankfully acknowledged. We extend our sincere appreciation to

Dr. Jutta Lindenborn of Springer for her valuable support to facilitate the comple-

tion of this book.

Makar Sankranti

January 2013
Dinesh K. Maheshwari

Meenu Saraf

Abhinav Aeron
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Chapter 1

Endophytic Bacteria: A Biotechnological

Potential in Agrobiology System

Paulo Teixeira Lacava and João Lúcio Azevedo

1.1 Introduction

The term endophyte is applied to microorganisms that live within plant tissues for

all or part of their life cycles and cause no apparent infections or symptoms of

disease (Wilson 1995; Azevedo et al. 2000; Bacon and White 2000; Saikkonen

et al. 2004). Hallmann et al. (1997) describe endophytes as those organisms that can

be isolated from surface-sterilized plant parts or extracted from inner tissues and

that cause no damage to the host plant. In addition, Azevedo and Araújo (2007)

suggested that endophytes are all microorganisms, culturable or not, that inhabit the

interior of plant tissues, cause no harm to the host, and do not develop external

structures. More recently, Mendes and Azevedo (2007) defined endophytic

microorganisms in the same way as other authors (Hallmann et al. 1997; Azevedo

et al. 2000; Azevedo and Araújo 2007) but suggested a division of endophytes in

two types: type I, or endophytes that do not develop external structures, and type II,

or endophytes that develop external structures.

Endophytic bacteria have been isolated from many different plant species

(Lodewyckx et al. 2002; Idris et al. 2004; Rosenblueth and Martinez-Romero

2006; Barzanti et al. 2007; Sheng et al. 2008; Mastretta et al. 2009); in some

cases, they may stimulate host growth through several mechanisms, including

biological control, induction of systemic resistance to pathogens, nitrogen fixation,

production of growth regulators, and enhancement of mineral nutrients or water

uptake (Ryan et al. 2008). Additionally, the endophytic bacteria isolated from
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plants that hyperaccumulate metals exhibit tolerance to high metal concentrations

(Idris et al. 2004; Rajkumar et al. 2009).

There is a great deal of interest in understanding endophyte diversity and the role

of endophytic bacteria in plant and bacterial ecology, evolutionary biology, and

applied research, ranging from biological control to bioprospecting for genes

(Azevedo et al. 2000; Araújo et al. 2008). In the past two decades, a lot of

information on the role of endophytic microorganisms in nature has been collected.

The ability to colonize internal host tissues has made endophytes valuable as a tool

to improve crop performance. In this review, we address the major topics

concerning the biotechnological potential of endophytic bacteria in agrobiology

systems.

1.2 Endophytic Bacteria from Different Host Plants

The role of endophytes and their significance has been studied using many different

approaches. Some of the important ones have been listed as follows.

1.2.1 Culturable Endophytic Bacteria with Agronomic Interest

Reported endophytes include both Gram-positive and Gram-negative bacteria and

the classes Alpha-, Beta-, and Gammaproteobacteria, Actinobacteria, Firmicutes,
and Bacteroidetes (Lodewyckx et al. 2002; Bacon and Hinton 2006). Approxi-

mately 300,000 plant species growing in unexplored areas of the earth are host to

one or more endophytes (Araújo et al. 2001), and the presence of biodiverse

endophytes in huge numbers plays an important role in the ecosystems with the

greatest biodiversity, such as tropical and temperate rainforests (Arachevaleta et al.

1989), which are found extensively in Brazil and possess almost 20 % of its

biotechnological source materials (Araújo et al. 2002).

Most studies on the occurrence of endophytic bacteria have been achieved using

culture-dependent approaches. The genus Burkholderia has been consistently

described as culturable and endophytic, and the bacteria can colonize sugarcane

(Robertson et al. 2000; Caballero-Mellado et al. 2004; Mendes et al. 2007;

Luvizotto et al. 2010). Burkholderia species are usually N2-fixing endophytes

when associated with sugarcane. Additionally, other studies have described the

importance of genus Burkholderia in the cultivation of sugarcane (Pugsley and

Oudega 1987; Perin et al. 2006; Castro-Gonzalez et al. 2011). Diazotrophic endo-

phytic strains of Burkholderia have been found in banana, pineapple, and maize

(Estrada et al. 2002; Weber et al. 1999).

Another genus with numerous endophytic bacteria colonizing different host

plants is Methylobacterium (Araújo et al. 2001; Lodewyckx et al. 2002; Pirttilä

et al. 2004; Idris et al. 2004, 2006; Podolich et al. 2009). Bacteria of the genus

2 P.T. Lacava and J.L. Azevedo



Methylobacterium are well-studied facultative methylotrophs (Corpe 1985) and are

capable of growing on one-carbon compounds (Lidstrom 1992). Sy et al. (2001)

isolated M. nodulans showing nitrogenase activity and nodulation ability from

Crotalaria species and assigned it to the fourth phylogenetic group of rhizobia.

Members of Methylobacterium are ubiquitous on plant surfaces, and they are able

to influence plant growth through the production of auxins or cytokinins and induce

systemic resistance against diseases (Lee et al. 2006; Madhaiyan et al. 2006).

Additionally, strains of Pantoea are found in rice and yam tubers (Omoregie

et al. 1999; Verma et al. 2001). Strains of Rhizobium have been found within rice

and maize (Gutierrez-Zamora and Martinez-Romero 2001; Tan et al. 2001; Yanni

et al. 1997). Strains of Serratia and Bradyrhizobium are found in rice (Tan et al.

2001). Azoarcus indigenes was discovered in Kallar grass but also enters rice and

sorghum easily (Egener et al. 1999; Reinhold-Hurek et al. 1993; Stein et al. 1997).

Endophytic bacteria are of agronomic interest because they can enhance plant

growth and improve the nutrition of plants through nitrogen fixation and other

mechanisms (Boddey et al. 2003; Sevilla et al. 2001). They are also of medical

interest because some bacterial endophytes are human pathogens that cannot

effectively be removed by surface sterilization (Beuchat et al. 2001; Proctor et al.

2001; Taormina et al. 1999; Weissinger and Beuchat 2000; Weissinger et al. 2001).

In that way, different species or strains of enteric bacteria were found to differ

greatly in their ability to colonize the interior of Medicago sativa (alfalfa) roots

(Dong et al. 2003). Klebsiella species are commonly found endophytes in maize

(Zea mays) (Fisher et al. 1992; McInroy and Kloepper 1995; Chelius and Triplett

2001), red clover (Sturz et al. 1998), grapevine (Bell et al. 1995), rice (Elbeltagy

et al. 2000), sweet potato (Paula et al. 1993; Adachi et al. 2002), alfalfa (Dong et al.

2003), and soybean (Kuklinsky-Sobral et al. 2004), where they may improve plant

growth via nitrogen fixation, as suggested by the dinitrogenase reductase protein of

K. pneumoniae found within the roots of maize (Chelius and Triplett 2000). On the

other hand, nitrogen-fixing bacteria that inhabit the interior of plants without

causing any disease are called diazotrophic endophytes (Iniguez et al. 2004). The

K. pneumoniae 342 (Kp342) strain is able to produce the nif H protein in maize

(Chelius and Triplett 2000) and wheat (Iniguez et al. 2004). Kp342, originally

isolated from a nitrogen-efficient maize line (Chelius and Triplett 2000), fixes N2

and increases maize yields in the field (Riggs et al. 2001). Lacava et al. (2007a)

reported the endophytic colonization of Catharanthus roseus using the endophytic

bacteria K. pneumoniae. These authors chose an appropriate strain, Kp342, labeled
with the GFP gene. This strain was inoculated onto seedlings of C. roseus. The
isolation frequency was determined 1 week after the inoculation, and the endo-

phytic colonization of K. pneumoniaewas observed using fluorescence microscopy.

The results suggest that C. roseus could be used as a model plant to study

endophytic bacteria.
Salmonella strains have been detected as endophytes in alfalfa (Dong et al.

2003). Outbreaks of these bacteria in alfalfa have been recorded in North America,

Asia, and Europe since 1995 (Ponka et al. 1995). It has been proposed that alfalfa

plants and seeds be colonized with safe bacteria to out-compete human pathogens.

1 Endophytic Bacteria: A Biotechnological Potential in Agrobiology System 3



For example, Enterobacter asburiae was found to eliminate S. enterica and

enterohemorrhagic Escherichia coli from Arabidopsis thaliana seeds (Cooley

et al. 2003). It is worrisome that there may be human or opportunistic pathogens

among plant endophytes. It seems that the bacteria best adapted for living inside

plants are naturally selected.

Endophytic bacteria have been isolated from a variety of plants, as reviewed by

Sturz et al. (2000) and Hallmann et al. (1997). Plants harboring endophytes were

reported in a recent review by Rosenblueth and Martinez-Romero (2006) of bacte-

rial endophytes and their interactions with hosts, but, most likely, there is not a

single plant species devoid of endophytes. The few examples of apparent absence

of endophytes suggest that some microorganisms are not easily isolated or cultured.

The diversity of endophytic bacterial species has been largely based on culture

techniques. Culture-independent analysis of bacterial populations inside citrus

plants also suggests that bacterial endophytic populations are much more diverse

than previously realized (Araújo et al. 2002; Lacava et al. 2006). Various reports

concerning endophytic bacteria in agricultural plants have demonstrated that the

use of fingerprinting techniques and clone analysis can provide additional informa-

tion for analyzing the community composition of endophytic bacteria (Chelius and

Triplett 2001; Garbeva et al. 2001; Seghers et al. 2004; Sessitsch et al. 2004).

1.2.2 Study of Endophytic by Culture-Independent Approaches

Culture-independent molecular approaches based on 16S rRNA gene analysis, such

as PCR amplification of 16S rDNAs, amplified ribosomal DNA restriction analysis

(ARDRA), denaturing gradient gel electrophoresis (DGGE), and terminal restric-

tion fragment length polymorphism (T-RFLP), have been successfully used for

bacterial community analysis in a great variety of environments, including soil

ecosystems (Dunbar et al. 1999), marine environments (Cottrell and Kirchman

2000), rhizospheres (Smalla et al. 2001), foods (Cocolin et al. 2002), and human

intestines (Kibe et al. 2005), to overcome the limitations of culture-dependent

approaches. However, these culture-independent approaches used on endophytic

bacteria have met with limited success due to disturbances from chloroplast 16S

rDNA and mitochondrial 18S rDNA.

Recently, Sessitsch et al. (2012) suggested a new approach to study the func-

tional characteristics of endophytic bacteria. The authors presented the first

metagenomic approach to analyze an endophytic bacterial community inside

roots of rice. They asserted that assessing microbial functions is impeded by

difficulties in cultivating most prokaryotes, and endophytes inside host tissues are

not always amenable to biochemical or genetic analyses (Mano and Morisaki 2008;

Weyens et al. 2009). From the results of Sessitsch et al. (2012), metagenome

sequences were obtained from endophytic cells extracted from the roots of field-

grown plants (rice). Putative functions were deduced from protein domains or

similarity analyses of protein-encoding gene fragments, and this allowed insight
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into the capacities of endophytic cells. Prominent features included flagella, plant-

polymer-degrading enzymes, protein secretion systems, iron acquisition and stor-

age, quorum sensing, and detoxification of reactive oxygen species. In this

metagenome analysis, endophytes might be involved in the entire nitrogen cycle

as protein domains involved in N2 fixation, denitrification, and nitrification because

genes involved in these cases were detected and expressed. Finally, the authors

concluded that a deeper understanding of endophytic functions and mechanisms for

their establishment in the endosphere could be exploited to improve agricultural

management practices with respect to biocontrol, bioremediation, and plant nutri-

tion. They suggested the metagenome approach as a method alternative to cultiva-

tion for the study of the role of bacterial endophytes that reside inside host plants.

1.3 Localization Inside of Host Plants

Endophytic bacteria appear to originate from seeds (Pleban et al. 1995; Adams and

Kloepper 1996), vegetative planting material (Dong et al. 1994), rhizosphere soil

(Sturz 1995; Hallmann et al. 1997; Mahaffee and Kloepper 1997), and the

phylloplane (Beattie and Lindow 1995). With the exception of seed-transmitted

bacteria, which are already present in the plant, potential endophytes must first

colonize the root surface prior to entering the plant. The initial processes of

colonization of plant tissue by endophytic bacteria can be via stoma, lenticels,

areas of emergence of lateral roots, and germinating radicles (Huang 1986). Several

authors have reported colonization of the secondary root emergence zone by

bacterial endophytes (Reinhold and Hurek 1988; Wiehe et al. 1994; Mahaffee

et al. 1997).

Various bacterial endophytes have been reported to live within cells, in intercel-

lular spaces, or in the vascular systems of plants (Hallmann et al. 1997; James and

Olivares 1998; Reinhold-Hurek and Hurek 1998; Sturz et al. 2000; Rosenblueth and

Martinez-Romero 2006; Gai et al. 2009). Although endophyte populations vary in

different plants according to many factors, bacterial populations are generally

larger in roots and smaller in stems and leaves (Lamb et al. 1996). Additionally,

the population density of endophytic bacteria found in plants depends on the plant

species, genotype, and tissue; the growth stage and specialization of the bacteria;

differences in colonization pathway; and mutual exclusion of different bacterial

populations (Sturz et al. 1997). According to Strobel and Daisy (2003), many

factors change endophytic biology, including the season, the age of the host

plant, the environment, and the location.

The processes of colonization of plant tissue by endophytic bacteria are complex

and include host recognition, spore germination, penetration, and colonization, and

the sources of endophytic colonization are diverse, ranging from transmission via

seeds (Ferreira et al. 2008) and vegetative planting material to entrance from the

surrounding environment, such as the rhizosphere and phyllosphere. However,

there is interest in finding bacterial strains with biological control or plant

1 Endophytic Bacteria: A Biotechnological Potential in Agrobiology System 5



growth-promoting capabilities. If these bacteria can be found in internal plant

tissues, as they can in the rhizosphere, these bacteria may have the unique capacity

to elicit beneficial effects from within the plants. As new beneficial bacterial strains

are identified, delivery of these strains to specific plant tissues will be needed. To

use endophytic bacteria in practical agronomic production, reliable and practical

methods of inoculation must be developed. Several delivery systems have been

reported for endophytic bacteria (Van Der Peer et al. 1990; Kumar and Dube 1992;

Musson 1994).

In our studies, we have used culture-dependent approaches based on media

culture (Fig. 1.1) and fluorescent microscopy (Fig. 1.2) to determinate the localiza-

tion of endophytic bacteria in host plants. The endophytic bacterium

Methylobacterium mesophylicum (strain SR1.6/6) in C. roseus and Nicotiana
clevelandii plants was made visible by scanning electron microscopy (SEM). The

highest densities were observed in the roots and hypocotyl, suggesting that these

sites may be the most important points of entry for strain SR1.6/6 in both plants.

Remarkably, cells adhering to the plants were immersed in a mucilagenous layer,

suggesting that strain SR1.6/6 is able to form a biofilm on the root and hypocotyl

surfaces of both plants (Andreote et al. 2006). Lacava et al. (2007a), using fluores-

cence microscopy, revealed that Klebsiella pneumoniae strain Kp342 colonized the
xylem vessels of Citrus sinensis roots and branches, and it was able to colonize the

xylem vessels of C. roseus branches and roots. Previous reports have described

the ability of K. pneumoniae to colonize the roots and vascular tissue of plants

(Dong et al. 2003). Based on isolation and fluorescence microscopy, Lacava et al.

(2007b) suggested that C. roseus could be used as a model plant to study the

interaction between endophytic bacteria and host plants. Ferreira et al. (2008)

reported an endophytic bacterial community residing in Eucalyptus seeds and the

transmission of these bacteria from seeds to seedlings. The authors suggested that

endophytic bacteria can be transmitted vertically from seeds to seedlings, assuring

the support of the bacterial community in the host plant. The authors evaluated the

characteristics of colonization of endophytic bacteria by isolation and fluorescence

microscopy. Gai et al. (2009) reported the localization of the endophytic bacterium

M. mesophilicum in C. roseus and the transmission of this endophyte by

Bucephalogonia xanthophis using isolation and fluorescence microscopy. C. roseus
is a model plant for the study of interactions between endophytic bacteria and

Xylella fastidiosa, the causal agent of citrus variegated chlorosis, and B. xanthophis
is an insect vector that transmits X. fastidiosa to citrus plants (Hartung et al. 1994).

1.4 Endophytic Bacteria: Biotechnological Potential

A better understanding of endophytic bacteria may help to elucidate their function

and potential role in developing sustainable systems of crop production (Sun et al.

2008). Bacteria interact with plants in four ways: as pathogens, symbionts,

epiphytes, or endophytes. Of these four types of bacteria–plant interactions,
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endophytic interactions are the least studied and least understood (Iniguez et al.

2005). Endophytic bacteria are of biotechnological and agronomic interest because

they can enhance plant growth and improve the nutrition of plants, and they can also

control pests and plant diseases (Boddey et al. 2003; Sevilla et al. 2001; Azevedo

et al. 2000).

Endophytes may increase crop yields, remove contaminants, inhibit pathogens,

and produce fixed nitrogen or novel substances (Rosenblueth and Martinez-Romero

2006). The repertoire of their effects and functions in plants has not been compre-

hensively defined. The challenge and goal is to be able to manage microbial

communities that favor plant colonization by beneficial bacteria. This will be

Fig. 1.1 Endophytic methylotrophic bacteria (Methylobacterium sp.) isolated from the branches

of citrus plants. Details of endophytic growth in the white arrows (photos by P.T. Lacava)

Fig. 1.2 Plant colonization by GFP-labeled K. pneumoniae 342 strain (a and b). Transverse

sections of Catharanthus roseus branches showing endophytic bacterial colonies inside the xylem
vessels (arrows) (photos by P.T. Lacava)
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possible when better knowledge of endophyte ecology and plant-endophyte molec-

ular interactions is attained.

The endophyte–host relationship is believed to be complex and most likely

varies from host to host and microorganism to microorganism (Boursnell 1950).

Many experiments have been conducted to compare how endophyte-infected plants

and noninfected plants behave in response to environmental stress and attack by

insect and animal predators (Owen and Hundley 2004). Furthermore, endophyte-

infected plants often grow faster than noninfected ones (Cheplick et al. 1989). This

effect is at least in part due to the endophytes’ production of phytohormones, such

as indole-3-acetic acid (IAA), cytokines, and other plant growth-promoting

substances (Tan and Zou 2001), and the fact that endophytes enhance the hosts’

uptake of nutritional elements such as nitrogen (Reis et al. 2000) and phosphorus

(Malinowski and Belesky 1999).

The search for interesting natural biological activities has been the basis for the

development of various applications in biotechnology and agriculture. The micro-

bial world, and endophytes in particular, reflects a genetic and metabolic biodiver-

sity, which has not yet been thoroughly explored.

1.4.1 Plant Growth Promotion by Endophytic Bacteria

Plant growth promotion by bacteria in an agrobiology system consists of two levels:

rhizospheric and endophytic (Bhattacharyya and Jha 2012). In endophytic

relationships, growth-promoting bacteria reside within the apoplastic spaces in

the host plants. There is direct evidence for the existence of endophytes in the

apoplastic intercellular spaces of parenchymal tissue (Dong et al. 1997) and the

xylem vessels (James et al. 2001; Araújo et al. 2002; Lacava et al. 2004). Endo-

phyte-infected plants often grow faster than noninfected ones (Cheplick et al.

1989). The growth stimulation by endophytes can be a consequence of nitrogen

fixation (Reis et al. 2000; Sevilla et al. 2001; Hurek et al. 2002; Iniguez et al. 2004),

production of phytohormones, such as IAA and cytokines (Tan and Zou 2001;

Lee et al. 2004), biocontrol of phytopathogens (Hallmann et al. 1997) through the

production of antifungal or antibacterial agents (Rosenblueth and Martinez-Romero

2006), siderophore production (Pirttilä et al. 2004), nutrient competition and

induction of acquired host resistance (Araújo et al. 2008), or enhancing the

bioavailability of minerals (Sessitsch et al. 2002; Sturz et al. 2000). Several

studies have indicated that endophytic colonization can also result in increased

plant vigor, and it confers tolerance to biotic and abiotic stresses (Azevedo and

Araújo 2003; Hallmann et al. 1997), enhanced drought tolerance (Arachevaleta

et al. 1989), and improved phosphorus utilization (Verma et al. 2001; Wakelin et al.

2004).

Although the interaction between endophytic bacteria and their host plants is

not fully understood, many isolates showed beneficial effects on their hosts and

may play an important role in the physiology of these plants. Several bacterial
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endophytes have been reported to support plant growth by providing

phytohormones, low-molecular-weight compounds, or enzymes (Lambert and

Joos 1989; Frommel et al. 1991; Glick et al. 1998). The colonization of ecological

niches is similar to that of phytopathogens. The release of antimicrobial substances,

such as antibiotics or HCN (Bangera and Thomashow 1996; Blumer and Haas

2000), the production of siderophores (O’Sullivan and O’Gara 1992), or the

induction of systemic resistance to pathogens (Liu et al. 1995; Madhaiyan et al.

2004) favor them as candidates for biological control. However, many well-known

plant pathogens may also be typical endophytic bacteria that normally cause no

disease symptoms (Kobayashi and Palumbo 2000) but become pathogenic under

certain conditions or within different host genotypes (Misaghi and Donndelinger

1990). In this context, some growth-promoting bacterial endophytes are being used

in forest regeneration, agricultural crops, and phytoremediation of contaminated

soil and water bodies (Jalgaonwala and Mahajan 2011).

1.4.1.1 Biological Nitrogen Fixation by Endophytic Bacteria

Tropical agriculture might be expected to be more dependent on N-fertilizers than

agriculture in temperate regions because heavy rains and more rapid decomposition

of organic matter cause leaching and rapid loss of N-fertilizers (Döbereiner 1997).

Nitrogenous chemicals account for as much as 30 % of total crop fertilizers.

However, nitrogenous fertilizers are becoming more scarce and costly. Biological

nitrogen fixation (BNF) is one of the possible biological alternatives to N-fertilizers

and could lead to more productive and sustainable agriculture without harming the

environment (Döbereiner and Urquiaga 1992).

Nitrogen is the major limiting factor for plant growth, the application of

N2-fixing endophytic bacteria as biofertilizer has emerged as one of the most

efficient and environmentally sustainable methods for increasing the growth and

yield of crop plants (Singh et al. 2011). Diazotrophic endophytic bacteria provide

more of fixed nitrogen than rhizospheric bacteria because the interior of plants is a

more suitable niche for nitrogen fixation due to the low partial oxygen pressure (pO2)

and direct accessibility of the fixed nitrogen to the plants (James and Olivares 1998).

Diazotrophic Endophytic Bacteria from Sugarcane

Extensive research on endophytic bacteria and its beneficial effects on plant growth

started with the isolation of endophytic Gluconacetobacter diazotrophicus from

Brazilian sugarcane (James and Olivares 1998). In Brazil, the long-term continuous

cultivation of sugarcane with low N-fertilizer inputs, without apparent depletion of

soil-N reserves, led to the suggestion that N2-fixing bacteria associated with the

plants may be the source of agronomically significant N inputs to this crop (Boddey

et al. 2003).
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Many N2-fixing bacteria are associated with sugarcane (Boddey et al. 2003).

Free-living N2-fixing bacteria belonging to the genera Beijerinckia, Azospirillum,
Azotobacter, Bacillus, Derxia, Enterobacter, and Erwinia appear to be frequent

colonizers of sugarcane (Döbereiner and Ruschel 1958; Arias et al. 1978; Hegazi

et al. 1979; Purchase 1980; Rennie et al. 1982; Graciolli et al. 1983; Seldin et al.

1984). The 1988 discovery of Acetobacter diazotrophicus (syn. Gluconacetobacter
diazotrophicus), a nitrogen-fixing bacterium inhabiting the interiors of the roots,

stems, and leaves of sugarcane, opened a new avenue of research into endophytic

nitrogen fixation in sugarcane. Recently, many endophytic species of Azospirillum
(Baldani et al. 1997), Herbaspirillum (Reis et al. 2000), Burkholderia
(Govindarajan et al. 2006; Luvizotto et al. 2010), and Klebsiella (Govindarajan

et al. 2007) have been isolated.

Studies of endophytes in sugarcane have focused on isolation and characteriza-

tion using morphological and physiological studies of diazotrophic bacteria as well

as molecular characterization of nif genes and 16S rRNA sequence analysis.

Magnani et al. (2010) examined the diversity of endophytic bacteria in the internal

tissues of sugarcane stems and leaves using molecular and biochemical methods.

The strains were divided into five groups based on the 16S rRNA sequences. Group

I comprised 14 representatives of the Enterobacteriaceae; group II was composed of

Bacilli; group III contained one representative, a Curtobacterium species; group IV

contained representatives of the Pseudomonadaceae family; and group V had one

isolate of an uncultured bacterium. Most of the bacteria isolated from the sugarcane

stem and leaf tissues belonged to Enterobacteriaceae and Pseudomonaceae, respec-

tively, demonstrating niche specificity. Overall, these authors found the endophytic

bacteria in sugarcane to be more diverse than previously reported (Magnani et al.

2010). Luvizotto et al. (2010) evaluated the ability of bacteria belonging to the

genus Burkholderia, endophytically isolated from roots of sugarcane in Brazil, to

fix atmospheric nitrogen according to Döbereiner et al. (1995). The ability to fix

nitrogen was observed in 94.7 % of endophytic Burkholderia strains.

Diazotrophic Endophytic Bacteria from Other Crops

In the 1980s, endophytic bacteria having nitrogen-fixing activity were found in

gramineous plants (Olivares et al. 1996; Reinhold-Hurek and Hurek 1998; Mano

and Morisaki 2008). Some endophytic bacteria in rice plants have been reported to

promote host growth. When the diazotrophic endophytes H. seropedicae Z67 strain
(James et al. 2002), Herbaspirillum sp. B501 strain (Zakria et al. 2007), Serratia
marcescens IRBG500 strain (Gyaneshwar et al. 2001), and some strains of

H. seropedicae and Burkholderia spp. (Baldani et al. 2000) are inoculates on rice

seedlings, the inoculated plants show a significant increase in weight compared to

the controls. A significant increase in biomass and grain yield has also been

recorded in greenhouse-grown rice plants inoculated with Rhizobium
leguminosarum bv. phaseoli (Singh et al. 2006).
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According Singh et al. (2011), six endophytic diazotrophic bacteria were

isolated from surface-sterilized roots of rice variety HUR-36, which is grown

with little or no nitrogen fertilizer. Out of six bacteria, one isolate, the RREM25

strain, showed an appreciable level of nitrogenase activity and was further

characterized with a view to exploiting its growth-promoting activity. Based on

16S rRNA gene sequence analysis, this isolate was identified as B. cepacia. The
diazotrophic nature of this particular isolate was confirmed by Western blot analy-

sis of dinitrogenase reductase and amplification of nif H. Microscopic observation

confirmed the colonization of gfp/gusA-tagged RREM25 in the intercellular spaces

of the cortical as well as vascular zones of roots. Inoculation of the RREM25 strain

into rice plants resulted in significant increases in plant height, dry shoot and root

weights, chlorophyll content, nitrogen content, and nitrogenase activity.

Kuklinsky-Sobral et al. (2004), in a study of the isolation and characterization of

bacteria associated with soybean, evaluated 75 endophytic isolates for their ability

to fix atmospheric nitrogen using two methods: bacterial growth in a nitrogen-free

medium (NFb medium) and PCR specific for the nif H gene (encodes nitrogenase

protein component II). The NFb medium methodology revealed that 60 % of the

analyzed endophytic isolates were able to grow in the nitrogen-free medium. These

isolates belonged to α- and β-Proteobacteria, although the predominant groups

were Enterobacteriaceae and Pseudomonadaceae. The PCR method revealed the

presence of nif H in 21 % of the endophytic isolates, which were identified as

Acinetobacter calcoaceticus, a Burkholderia sp., Pseudomonas spp., a Ralstonia
sp., and species belonging to the Enterobacteriaceae group. In the same study, only

9 % of epiphytic isolates displayed the nif H gene.

The N2-fixing ability of bacterial endophytes of ginseng (Panax ginseng C.A.

Meyer) was screened by partial amplification of the nifH gene (Vendan et al. 2010).

Out of 18 isolates, only two, Stenotrophomonas maltophilia (E-II-3 strain) and

Agrobacterium tumefaciens (E-II-7 strain), showed amplification of the nif H gene.

Much evidence exists for significant N2 fixation by endophytic diazotrophs such as

Gluconacetobacter, Azoarcus, and Herbaspirillum (Reinhold-Hurek and Hurek

1998). A. tumefaciens is capable of fixing nitrogen in a free-living condition

(Kanvinde and Sastry 1990), and S. maltophilia isolated from various agricultural

crops can display nitrogenase activity above 150 nmol/h/mg of protein (Park et al.

2005). Previous studies employing different nif H primers have also shown suc-

cessful and specific amplification of nif H from a variety of bacteria and natural

samples (Potrich et al. 2003). However, positive amplification of nif H in only two

isolates in this study suggests the presence of host specificity or preference for

diazotrophic endophytes similar to those in microbe-plant mutualisms found with

Rhizobium and legumes (Vendan et al. 2010).

The two most widely studied genera among the diazotrophic endophytes are

Gluconacetobacter and Herbaspirillum. Both of these genera were originally

discovered as endophytes of sugarcane (Baldani et al. 1986; Gillis et al. 1989).

Since their discovery in sugarcane, strains of G. diazotrophicus have been found to

inhabit the interior of pineapple, sorghum, African millet, and coffee, and strains of

Herbaspirillum have been discovered in rice, elephant grass, maiden grass, Amur
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silver grass, prairie cordgrass, maize, sorghum, banana, African palm oil, and

pineapple (Bastian et al. 1999; Chelius and Triplett 2001; Dong et al. 1994; Dos

Reis et al. 2000; Fuentes-Ramı́rez et al. 2001; Gyaneshwar et al. 2002; James et al.

1997; Jiménez-Salgado et al. 1997; Kirchhof et al. 1997; Loganathan et al. 1999;

Reis et al. 2000; Tapia-Hernandez et al. 2000; Weber et al. 1999).

The concept of BNF by endophytes (Döbereiner 1992) has led to investigations

on the potential uses of endophytic nitrogen-fixing bacteria that colonize

graminaceous plants. It has been suggested that these bacteria express their nitro-

gen-fixing potential better when inside plant tissues due to lower competition for

nutrients and protection from the high levels of O2 that are present on the root

surface (Boddey and Döbereiner 1995).

The widespread use of synthetic fertilizers has resulted in environmental degra-

dation, a decline in beneficial micro- and macroorganisms, and accumulation of

chemical residues in the food system. For sustainable agriculture, the use of

biologically derived fertilizers would be ecologically sound and economically

viable alternatives. These crop-associated indigenous nitrogen fixers may be

agronomically important because they could supply part of the nitrogen that the

crop requires (Govindarajan et al. 2007).

1.4.1.2 Production of Indole-3-Acetic Acid by Endophytic Bacteria

It has been reported that endophytic bacteria may promote plant growth and

suppress plant diseases, most likely by means similar to growth-promoting

rhizobacteria (Feng et al. 2006; Vendan et al. 2010). Furthermore, plant growth

promotion is often greater when it is induced by endophytes rather than by

bacteria restricted to the rhizosphere and the root surface (Chanway et al.

2000). In this context, like rhizospheric bacteria, endophytic bacteria have been

shown to have growth-promoting activity due to the production of phytohormones

or enzymes involved in growth regulator metabolism, such as indole-3-acetic

acid (IAA) (Taghavi et al. 2009). The ability to synthesize phytohormones is

widely distributed among plant-associated bacteria, and 80 % of the bacteria

associated with plants are able to produce IAA (Costacurta and Vanderleyden 1995;

Cheryl and Glick 1996).

The physiologically most active auxin in plants is IAA, which is known to

stimulate both rapid (increases in cell elongation) and long-term (cell division

and differentiation) responses in plants (Cleland 1990; Hagen 1990). IAA is the

most common and best characterized phytohormone. In addition to IAA, bacteria

also release other compounds in the rhizosphere, like indole-3-butyric acid (IBA),

Trp, and tryptophol or indole-3-ethanol (TOL) that can indirectly contribute to

plant growth promotion (Lebuhn et al. 1997; El-Khawas and Adachi 1999). It has

been found that bacteria synthesize IAA by way of several pathways, and the

operation of more than one pathway in certain species has been proposed (Cheryl

and Glick 1996). Tryptophan (Trp) is generally considered to be the IAA precursor

because its addition to IAA-producing bacterial cultures promotes an increase in
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IAA synthesis (Costacurta and Vanderleyden 1995). This accounts for the fact that

the Trp-dependent pathways of bacterial IAA synthesis have received the most

attention. For example, in Enterobacter cloacae, IAA is synthesized via indole-3-

pyruvic acid (IPyA) (Koga et al. 1991). In Pseudomonas syringae, IAA biosynthe-

sis occurs mostly from Trp via indole-3-acetamide (IAM) (Hutcheson and Kosuge

1985; Kosuge and Sanger 1987; Magie et al. 1963; Comai and Kosuge 1980), and in

P. fluorescens, Trp, bypassing the IPyA step, is directly converted to indole-3-

acetaldehyde, which is further converted to IAA (Oberhansli et al. 1991).

Many studies have described the ability of endophytic bacteria to produce

phytohormones and auxins, such as IAA (Hallmann et al. 1997; Glick et al. 1998;

Lodewyckx et al. 2002), and the ability to produce IAA is considered to be

responsible for plant growth promotion by beneficial bacteria, such as Azospirillum,
Alcaligenes faecalis, Klebsiella, Enterobacter, Acetobacter diazotrophicus, and
Herbaspirillum seropedicae (Costacurta and Vanderleyden 1995). The bacterial

production of IAA has been studied not merely because of its physiological effect

on plants but also because of this phytohormone’s role in plant–microbe

interactions (Costacurta and Vanderleyden 1995). In this context, Miliūtė and

Buzaitė (2011) have suggested that IAA production is a common growth-promoting

trait among apple tree endophytic bacteria. These authors reported that endophytic

bacteria associated with apple tree buds were isolated, characterized, and tested for

their ability to produce the plant hormone IAA. Nine isolates were shown to

produce IAA. The amounts of IAA produced in culture ranged from 1.2 to

2.4 μg/mL.

Recently, Vendan et al. (2010) investigated the IAA production of endophytic

bacteria isolated from ginseng (Panax ginseng C.A. Meyer). Ginseng is one of the

most important remedies in oriental medicine (Yu et al. 2003), and it is presently

used as a health tonic and in adaptogenic, anti-aging, prophylactic, and restorative

remedies. In general, growth of high-quality ginseng requires at least 4 years of

cultivation in the shade (Cho et al. 2007; Qiu et al. 2007). According to Vendan

et al. (2010), 14 of the 18 endophytic isolates produced significant amounts of IAA

in nutrient broth supplemented with tryptophan as a precursor. The isolate E-I-4

(Micrococcus luteus) produced the highest amounts of IAA (13.93 μg/mL),

followed by the isolates E-I-20 (Lysinibacillus fusiformis, 7.23 μg/mL), and E-I-8

(Bacillus cereus, 4.61 μg/mL). These results suggest the potential of endophytic

bacteria to improve the production of ginseng (Vendan et al. 2010).

In our research, we have been screening endophytic bacteria for the production

of IAA. Some examples of these studies are Kuklinsky-Sobral et al. (2004) and

Assumpção et al. (2009). Kuklinsky-Sobral et al. (2004) isolated epiphytic and

endophytic bacteria from two soybean cultivars (Foscarin and Cristalina). The

isolates were identified by partial 16S rDNA sequence analysis, with most of the

isolates belonging to the Pseudomonaceae, Burkholderiacea, and Enterobac-
teriaceae groups, and the potential of these isolates for plant growth promotion

was evaluated by screening for IAA. The results indicated a higher production of

IAA by endophytic (34 %) than epiphytic (21 %) isolates in this study. Addition-

ally, the soybean-associated bacteria showing characteristics related to growth
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promotion were identified as belonging to the genera Pseudomonas, Ralstonia,
Enterobacter, Pantoea, and Acinetobacter.

The isolation, characterization, and identification of endophytic bacteria in

soybean seeds were investigated by Assumpção et al. (2009), and the biotechno-

logical potential of the bacteria was evaluated. The isolates that produced IAA

were inoculated in soybean seeds to evaluate their ability to promote plant

growth. There were 12 endophytic isolates: Acinetobacter, Bacillus, Brevibacterium,
Chryseobacterium, Citrobacter, Curtobacterium, Enterobacter, Methylobacterium,
Microbacterium, Micromonospora, Pantoea, Paenibacillus, Pseudomonas,
Ochrobactrum, Streptomyces, and Tsukamurella. The results showed that all of

the isolates synthesized IAA, and the strain 67A (57) of Enterobacter
sp. significantly increased the dry root biomass.

1.4.1.3 Phosphate Solubilization by Endophytic Bacteria

Phosphorus is one of the major growth-limiting nutrients in plants and is often the

limiting mineral nutrient for biomass production in natural ecosystems. It is only

taken up in monobasic or dibasic soluble forms (Glass 1989; Zaidi et al. 2006).

Phosphates applied to agricultural soils are rapidly immobilized and rendered

inaccessible for plants. Due to this rapid immobilization, many agricultural soils

have large reservoirs of phosphates in inaccessible forms (Rodrı́guez and Fraga

1999). In this scenario, phosphorus-solubilizing activity is determined by the ability

of microorganisms to release metabolites such as organic acids, which through their

hydroxyl and carboxyl groups chelate the cation bound to phosphate, the latter

being converted to soluble forms (Sagoe et al. 1998; Pal 1998; Gyaneshwar et al.

2002; Zaida et al. 2003; Chung et al. 2005; van der Heijden et al. 2008; Khan et al.

2009).

Phosphorus is important for the plant growth and promotes root development,

tillering, and early flowering and performs other functions like metabolic activities,

particularly in synthesis of protein (Tanwar and Shaktawat 2003). The rhizosphere

microorganisms play a significant role for P solubilization in many crops especially

under P deficiencies (Khan et al. 2009). Among the soil microorganisms, phos-

phate-solubilizing bacteria (PSB) play an important role in solubilizing P for the

plants and allowing more efficient use of P fertilizers (Gyaneshwar et al. 1998).

These plant growth-promoting rhizobacteria can colonize the root surface, and

some have been shown to colonize endophytically (Naher et al. 2009). The associ-

ation and colonization of PSB on surface of roots involve direct competition with

other rhizosphere microorganisms, while the endophytic population of PSB may

give more beneficial effects to the plants due to less competition. In this context,

endophyte offers several advantages over rhizobacteria, such as the endophyte is

correlated more closely to plant as compared with rhizobacteria, so more effective

effects may exist in complementary niches of endophyte and its host. Furthermore,

the host plant provides a ready-made environment so that the endophytic bacteria
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could be better protected from biotic and abiotic stresses than rhizobacteria

(Newman and Reynolds 2005).

Phosphate solubilization is a common trait among endophytic bacteria. For

instance, the majority of endophytic populations from peanut, legumes, sunflower,

and cactus were able to solubilize mineral phosphates in plate assays (Palaniappan

et al. 2010; Forchetti et al. 2007; Puente et al. 2009).

Bacterial endophytes can accelerate seedling emergence, promote plant estab-

lishment under adverse conditions, and enhance plant growth (Chanway 1997; Bent

and Chanway 1998). Endophytic bacteria are believed to elicit plant growth pro-

motion by helping plants acquire nutrients (nitrogen fixation) or chelating iron

(Costa and Loper 1994), by preventing infections via antifungal or antibacterial

agents, out-competing pathogens for nutrients, siderophore production, or

establishing the plant’s systemic resistance (van Loon et al. 1998) and by producing

phytohormones, such as auxin or cytokinin (Madhaiyan et al. 2006). Also, phos-

phate solubilization by endophytes is an interesting component of plant growth

promotion because endophytic bacteria are compatible with host plants and able to

colonize the tissues of the host plants without being recognized as pathogens

(Rosenblueth and Martinez-Romero 2006).

In our research group, Kuklinsky-Sobral et al. (2004) analyzed epiphytic and

endophytic isolates from several growth stages and cultivars of soybean. They

found that 60 % of the endobacterial isolates (mostly Pseudomonaceae,
Burkholderiaceae, and Enterobacteriaceae) from the early plant growth stages

were phosphate solubilizers compared to less than 50 % of the isolates from

senescent plants. The majority of the phosphate-mobilizing isolates were also

able to fix nitrogen and produce IAA. Phosphate-solubilizing bacteria also revealed

other properties beneficial to plants, including the ability to grow on a nitrogen-free

medium and the production of several phytohormones (Puente et al. 2009; Vendan

et al. 2010). In another of our studies, Dias et al. (2009) analyzed endophytic

isolates from strawberry (mostly Bacillus subtilis and B. megaterium) that were
all able to solubilize calcium phosphate in plate assays. The phosphate solubiliza-

tion efficiency varied markedly across isolates. The plant growth promotion capac-

ity of the isolates correlated with their phosphate solubilization activity as well as

with IAA production.

Vendan et al. (2010) examined endophytic bacterial isolates from ginseng

(Panax ginseng) for their phosphate-solubilizing ability by detecting extracellular

solubilization of precipitated tricalcium phosphate with glucose as the sole source

of carbon. Half of the endophytic isolates tested showed phosphate-solubilizing

activity. Based on the solubilization zone, an endophytic isolate of Lysinibacillus
fusiformis recorded higher solubilization of mineral phosphate. In the same study,

endophytic isolates of Bacillus cereus and B. megaterium also showed notable

solubilization activity.
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1.4.1.4 Siderophore Production by Endophytic Bacteria

Iron is a necessary cofactor for many enzymatic reactions and is an essential

nutrient for virtually all organisms. In aerobic conditions, iron exists predominantly

in its ferric state (Fe3+) and reacts to form highly insoluble hydroxides and

oxyhydroxides that are largely unavailable to plants and microorganisms. To

acquire sufficient iron, siderophores produced by bacteria can bind Fe3+ with a

high affinity to solubilize this metal for its efficient uptake. Bacterial siderophores

are low-molecular-weight compounds with high Fe3+ chelating affinities (Sharma

and Johri 2003) responsible for the solubilization and transport of this element into

bacterial cells. Some bacteria produce hydroxamate-type siderophores, and others

produce catecholate-types (Neilands and Nakamura 1991). In a state of iron limita-

tion, the siderophore-producing microorganisms are also able to bind and transport

the iron-siderophore complex by the expression of specific proteins (Nachin et al.

2001; Nudel et al. 2001). The production of siderophores by microorganisms is

beneficial to plants because it can inhibit the growth of plant pathogens (Masclaux

and Expert 1995; Nachin et al. 2001; Sharma and Johri 2003; Etchegaray et al.

2004; Siddiqui 2005).

Siderophores can also induce resistance mechanisms in the plant (Schroth and

Hancook 1995). Plant growth promotion, including the prevention of the deleteri-

ous effects of phytopathogenic organisms (Sharma and Johri 2003), can be

achieved by the production of siderophores (Hayat et al. 2010). Production of

siderophores is a mechanism through which endophytic biocontrol agents suppress

pathogens indirectly by increasing the availability of minerals to the biocontrol

agent in addition to iron chelation and, thus, stimulating the biosynthesis of other

antimicrobial compounds (Duffy and Defago 1999).

Endophytic bacteria colonize an ecological niche similar to that of plant

pathogens, especially vascular wilt pathogens, which might favor them as potential

candidates for biocontrol and growth-promoting agents (Ramamoorthy et al. 2001).

Several bacterial endophytes have been reported to support plant growth

by providing phytohormones, low-molecular-weight compounds, or enzymes

(Lambert and Joos 1989; Frommel et al. 1991; Glick et al. 1998). Production of

siderophores is another mechanism by which endophytic biocontrol agents suppress

pathogens indirectly by stimulating the biosynthesis of other antimicrobial

compounds by increasing availability of minerals to the biocontrol agent in addition

to iron chelation (O’Sullivan and O’Gara 1992; Duffy and Defago 1999; Persello-

Cartieaux et al. 2003). In this context, Vendan et al. (2010) suggested that

siderophore production may be a common phenotype among endophytes (Vendan

et al. 2010).

In a recent study of the diversity and potential for plant growth promotion of

endophytic bacteria isolated from ginseng (Panax ginseng C.A. Meyer), Vendan

et al. (2010) described the siderophore production by seven endophytic bacteria

strains. These strains were classified as Bacillus cereus, B. flexus, B. megaterium,

16 P.T. Lacava and J.L. Azevedo



Lysinibacillus fusiformis, L. sphaericus, Microbacterium phyllosphaerae, and

Micrococcus luteus.
Siderophore production by endophytic bacteria has been investigated in only a

few cases, mainly as a mechanism of certain bacteria to antagonize pathogenic

fungi. Thus, it was observed that all the isolates from cotton roots having antago-

nistic activity, mainly Pantoea spp., excreted siderophores (Li et al. 2009). Also in

rice, strains of the genera Pseudomonas and Burkholderia and two species of

Pantoea (P. ananatis and P. agglomerans) having antagonistic activity excreted

siderophores (Yang et al. 2008).

According to Verma et al. (2011), three endophytic actinobacteria strains

isolated from the root tissues of Azadirachta indica plants were selected through

tests for their potential as biocontrol and plant growth-promoting agents. It was also

observed that the seed treated with the spore suspension of three selected endo-

phytic strains of Streptomyces significantly promoted plant growth and antagonized

the growth of Alternaria alternata, the causal agent of early blight disease in tomato

plants. It was observed that the three selected strains prolifically produce

siderophores that play a vital role in the suppression of A. alternata. These authors
concluded that these endophytic isolates have the potential to be plant growth

promoters as well as a biocontrol agent, which is a useful trait for crop production

in nutrient-deficient soils.

Loaces et al. (2011) described and characterized the community of endophytic,

siderophore-producing bacteria (SPB) associated withOryza sativa. Less than 10 %
of the endophytic bacteria produced siderophores in the roots and leaves of young

plants, but most of the endophytic bacteria were siderophore-producers in mature

plants. According to the results, 54 of the 109 endophytic SPB isolated from

different plant tissues or growth stages from replicate plots of O. sativa were

unique. The relative predominance of bacteria belonging to the genera

Sphingomonas, Pseudomonas, Burkholderia, and Enterobacter alternated during

plant growth, but the genus Pantoea was predominant in the roots at tillering and in

the leaves at subsequent stages. Pantoea ananatis was the SPB permanently

associated with all of the plant tissues of O. sativa. In the same study, the

SPB and plant growth-promoting bacteria (PGPB) Azospirillum brasilense,
A. amazonense, and Herbaspirillum seropedicae were assessed using dual culture

in vitro on NFbI medium to allow the simultaneous growth of PGPB and SPB.

These PGPB are considered important genera of endophytic diazotrophs (Baldani

and Döbereiner 1980; Baldani et al. 2000, 2003). The results indicate that the

SPB P. ananatis is the permanent and dominant associated species and is unable

to inhibit two of the relevant plant growth-promoting bacteria, A. brasilense and

H. seropedicae.
However, based on the results of our research group (Lacava et al. 2008), we

suggested that in some cases the phytopathogens have the ability to use

siderophores produced by endophytic bacteria. So, Lacava et al. (2008) described

the production, and characterization of siderophores by endophytic bacteria in the

genus Methylobacterium was evaluated by microbial and biochemical methods.

These endophytic bacteria occupy the same niche as X. fastidiosa, a causal agent of
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citrus variegated chlorosis (CVC), in the host plant. All strains ofMethylobacterium
spp. tested were positive in the chrome azurol S (CAS) assay for siderophore

production. Methylobacterium spp. produce hydroxamate-type but not catechol-

type siderophores. The production of siderophores by twoM. mesophilicum isolates

and one M. extorquens isolate was evaluated by using a CE-ESI-MS with a liquid

sheath interface and IT mass analyzer. The bacterial cultures were grown in

either the absence (siderophore-producing cultures) or presence (control cultures)

of Fe(III) and siderophores. The results show that M. mesophilicum and

M. extorquens synthesize siderophores of masses (Mr) 1004.3 and 798.3 Da,

respectively. Analysis in vitro showed that the growth of X. fastidiosa was

stimulated by the presence of a siderophore originating from the supernatant of

an endophytic Methylobacterium mesophilicum. If X. fastidiosa is able to use

heterologous siderophores during its establishment inside the host plant, it may

benefit from the production of siderophores by endophytic symbionts.

1.4.2 Biological Control of Insect-Pests and Plant Diseases
by Endophytic Bacteria

The control of insect-pests and diseases by means of biological processes, such as

the use of entomopathogenic microorganisms or those that inhibit/antagonize

microorganisms pathogenic to plants, is an alternative that may help to reduce or

eliminate the use of chemical products in agriculture (Azevedo et al. 2000).

Agriculture by its own nature is anti-ecological, and, with the use of chemical

fertilizers, insecticides, fungicides, herbicides, and antibiotics on a large scale,

profound biological modifications have been occurring. Products such as

insecticides and fungicides aim to control pests and phytopathogenic

microorganisms. However, they are responsible for eliminating important species

of insects that control other pests and microorganisms that are performing a crucial

role in the environment, inhibiting the growth, and the multiplication of other

microorganisms. One group of microorganisms that is affected by these anthropo-

genic modifications is the endophytes.

The natural and biological control of pests and diseases affecting cultivated

plants has gained much attention in the past decades as a way of reducing the use of

chemical products in agriculture. Biological control has been frequently used in

Brazil, and it is supported by the development of basic and applied research on this

field not only in our country but also in South America, as shown by several reviews

(Lecuona 1996; Alves 1998; Melo and Azevedo 1998). The use of agrochemicals,

although decreasing the impact of insects and phytopathogenic microorganisms,

still represents a high risk for field workers and consumers.

In this part of the chapter, we will focus on examples of endophytic bacteria,

especially those that may control insect-pests and plant diseases by antagonistic
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effects, production of enzymes, or introduction of heterologous genes by recombi-

nant DNA technology.

1.4.2.1 Biocontrol of Plant Diseases by Antagonistic Endophytic Bacteria

Recent studies have indicated that biological control of bacterial wilt disease could

be achieved using antagonistic bacteria. Different bacterial species, namely,

Alcaligenes spp. and Kluyvera spp. (Assis et al. 1998), Pseudomonas fluorescens,
P. alcaligenes, P. putida, Flavobacterium spp. and Bacillus megaterium (Reiter

et al. 2002), B. pumilus (Benhamou et al. 1998) and Microbacterium spp.,

Clavibacter michiganensis, Curtobacterium spp. and B. subtilis (Zinniel et al.

2002), have been reported as endophytes and were inhibitory to plant pathogens.

Toyota and Kimura (2000) have reported the suppressive effect of some antagonis-

tic bacteria on Ralstonia solanacearum. Moreover, Ciampi-Panno et al. (1989) have

demonstrated the use of antagonistic microbes in the control of R. solanacearum
under field conditions.

Ramesh et al. (2009) have suggested that Pseudomonads are the major

antagonistic endophytic bacteria that suppress the bacterial wilt pathogen,

R. solanacearum, in eggplant (Solanum melongena L.). Twenty-eight bacterial

isolates that effectively inhibited R. solanacearum were characterized and

identified in vitro (Ramesh et al. 2009). More than 50 % of these isolates were

P. fluorescens. In greenhouse experiments, the plants treated with Pseudomonas
isolates (EB9, EB67), Enterobacter isolates (EB44, EB89), and Bacillus isolates
(EC4, EC13) reduced the incidence of wilt by more than 70 %. All the selected

isolates reduced damping by more than 50 % and improved the growth of seedlings

in the nursery stage. Large-scale field evaluations and detailed knowledge of

antagonistic mechanisms could provide an effective biocontrol solution for bacterial

wilt of solanaceous crops.

In our study, we suggested that the endophytic bacteria Curtobacterium
flaccumfaciens, isolated from citrus plants (Araújo et al. 2001), can inhibit

X. fastidiosa, a phytopathogenic bacterium that is the causal agent of citrus variegated

chlorosis (CVC) (Schaad et al. 2004), both in vitro (Lacava et al. 2004) and in vivo

(Lacava et al. 2007b), when inoculated in the model plant C. roseus (Monteiro et al.

2001). C. roseus has been used to study the interaction between endophytic bacteria

and X. fastidiosa in greenhouse environments (Lacava et al. 2006; Andreote et al.

2006). To characterize the interactions of X. fastidiosa and the endophytic bacteria

C. flaccumfaciens in vivo, C. roseus plants were inoculated separately with

C. flaccumfaciens, X. fastidiosa, and both bacteria together (Lacava et al. 2007b).

The number of flowers produced by the plants, the heights of the plants, and the

exhibited disease symptoms were evaluated. X. fastidiosa induced stunting and

reduced the number of flowers produced by C. roseus. When C. flaccumfaciens was
inoculated together with X. fastidiosa, no stunting was observed. The number of

flowers produced by our doubly inoculated plants was an intermediate between the

number produced by the plants inoculated with either of the bacteria separately.
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These data indicate that C. flaccumfaciens, an endophytic bacterium, interacted

with X. fastidiosa in C. roseus and reduced the severity of the disease symptoms

induced by X. fastidiosa.
The identification of biological sources for the control of plant pathogenic fungi

remains an important objective for sustainable agricultural practices. In a recent

project with financial support from several Brazilian agencies (Foundation of

Support the Research of the State of Amazonas [FAPEAM] and the State of São

Paulo Research Foundation [FAPESP—Grant/Process no. 09/53376-2]), we

screened the antagonistic activity in vitro of endophytic bacteria versus

Colletotrichum sp., the causal agent of anthracnose disease (Silva et al. 2004) of

guarana (Paullinia cupana var. sorbilis [Mart.] Ducke). Fruit from guarana are of

both economic and social importance in Brazil. Sodas, syrups, juices, and several

pharmaceutical products are made from guarana-toasted grains (Angêlo et al.

2008). A significant decrease in the area of guarana production, particularly in

the Brazilian Amazon region, can be attributed to anthracnose disease. In this study,

the endophytic bacteria used in the antagonism test were isolated from guarana

plants. We found some endophytic isolates from guarana with antagonism activity

against Colletotrichum sp. in our preliminary results (Fig. 1.3).

1.4.2.2 Endophytic Actinobacteria in the Control of Phytopathogens

Endophytic actinobacteria have been isolated from a wide variety of plants, and the

most frequently isolated species belong to the genera Microbispora, Nocardia,
Micromonospora, and Streptomyces, the last of which is the by far the most

abundantly observed (Sardi et al. 1992; Taechowisan et al. 2003). Actually, the

best studied genus of actinobacteria is Streptomyces (Seipke et al. 2012), which has
a complex developmental life cycle (Flärdh and Buttner 2009) and produces

numerous secondary metabolites (Challis and Hopwood 2003).

Endophytic Streptomyces bacteria are not simply plant commensals but confer

beneficial traits to their hosts that primarily fall into two categories: growth

promotion and protection from phytopathogens. Members of the genus Streptomy-
ces are prolific producers of antimicrobial compounds, and endophytic

streptomycetes are no exception (Seipke et al. 2012). Numerous endophytic Strep-
tomyces isolates inhibit the growth of fungal phytopathogens both in vitro and in

planta, and this antibiosis has been proposed as one of the mechanisms by which

endophytes suppress plant diseases (Sardi et al. 1992; Coombs and Franco 2003;

Taechowisan et al. 2003; Franco et al. 2007).

Endophytic actinobacteria (Sardi et al. 1992; Coombs and Franco 2003;

El-Tarabily 2003; Rosenblueth and Martinez-Romero 2006) have been isolated

from within the living tissues of various plant species. These endophytes have been

shown to protect plants against different plant pathogens including Rhizoctonia
solani and Verticillium dahliae (Krechel et al. 2002), Plectosporium tabacinum
(El-Tarabily 2003), Gaeumannomyces graminis var. tritici and R. solani
(Coombs et al. 2004), Fusarium oxysporum (Cao et al. 2005), Pythium aphanidermatum
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(El-Tarabily 2003, El-Tarabily et al. 2009), and Botrytis cinerea and Curvularia
lunata (Kafur and Khan 2011).

In our research group, Quecine et al. (2008) evaluated chitinase production by

endophytic actinobacteria and the potential of this for the control of phytopatho-

genic fungi. Actinobacteria are used extensively in the pharmaceutical industry and

agriculture owing to their great diversity of enzyme production. In this study,

endophytic Streptomyces strains were grown on minimal medium supplemented

with chitin, and chitinase production was quantified. The strains were screened for

any activity towards phytopathogenic fungi with a dual-culture assay in vitro. The

correlation between chitinase production and pathogen inhibition was calculated

and further confirmed on Colletotrichum sublineolum cell walls by scanning elec-

tron microscopy. Quecine et al. (2008) report a genetic correlation between

chitinase production and the biocontrol potential of endophytic actinobacteria in

an antagonistic interaction with different phytopathogens, suggesting that this

control could occur inside the host plant. Additionally, a genetic correlation

between chitinase production and pathogen inhibition was demonstrated. Finally,

Fig. 1.3 (a) Growth of the phytopathogen Colletotrichum spp. in culture medium (control). (b),

(c), and (d): antifungal activity of endophytic bacteria (Bacillus sp.) isolated from guarana

(Paullinia Cupana) against Colletotrichum spp. (photos by P.T. Lacava)
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these results provide an enhanced understanding of endophytic Streptomyces and its
potential as a biocontrol agent.

1.4.2.3 Endophytic Actinobacteria in the Control of Insect-Pests

The actinomycetes are a widely exploited group of microorganisms that can

produce enzymes and antibiotics for agricultural applications such as eco-friendly

crop protection. Among the actinomycetes, Streptomyces spp. are particularly

efficient in the breakdown of chitin via chitinolytic enzymes (Bhattacharya et al.

2007; Quecine et al. 2008). During the past decade, several reports described this

chitinolytic activity, and the corresponding genes responsible have been isolated

and characterized (Robbins et al. 1998; Tsujibo et al. 1993; Christodoulou et al.

2001; Barboza-Corona et al. 2003; Kim et al. 2003). There is a wide variety of

chitinases and a correspondingly large range of optimal temperatures and pH values

for chitinase activity to determinate how well suited the chitinase is for pest control

applications (Kramer and Muthukrishnan 1997). Our research group reported the

partial characterization of the chitinolytic extract produced by an endophytic

Streptomyces sp. strain (A8) (Quecine et al. 2011).

The extract produced by the A8 strain was also tested against Anthonomus
grandis Boheman (Coleoptera: Curculionidae), the cotton boll weevil (Quecine

et al. 2011). The chitinase crude extract from the A8 strain was cultured for 5 days

in a minimal liquid medium supplemented with chitin. The extract was partially

characterized by standard methods. The chitinolytic extract had an optimum tem-

perature of 66 �C and an optimum pH between 4 and 9 (approximately 80 % of

relative activity). We also characterized the temperature and pH stability and

measured the effects of enzyme inhibitors (Figs. 1.4 and 1.5). The filtered

chitinolytic extract was added to an artificial boll weevil diet. Boll weevil develop-

ment from the egg stage to the adult stage was prolonged, and the percentage of

adults that emerged was approximately 66 % less than on the control diet (Fig. 1.6).

This study showed that the larval development of A. grandis was inhibited by the

presence of characterized chitinolytic extract in the artificial diet. This work

provides an experimental basis for using the chitinase from an endophytic Strepto-
myces sp. as an alternative to controlling the plant pest A. grandis. In this context,

the cotton boll weevil, A. grandis, is major pest that affects cotton production in the

Americas (Martins et al. 2007, 2008). It is typically controlled with chemical

agents, but these chemicals are expensive and may disrupt predator and parasitoid

populations due to their broad-spectrum activities (Burton 2006; Wolkers et al.

2006). Consequently, it is necessary to search for safer alternatives for boll weevil

control. Biological and other control strategies to decrease the damage to cotton

crops by the boll weevil are encouraged in integrated pest management strategies,

which utilize insecticides that are more selective (Pimenta et al. 1997).
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1.4.2.4 The Recombinant DNA Technology and Biocontrol by Endophytic

Bacteria

Recently, recombinant DNA technology has been applied to improve endophytic

microorganisms, aiming to introduce new characteristics of agronomic interests,

such as the biological control of insect-pests (Azevedo et al. 2000; Araújo et al.

Fig. 1.4 Effects of pH on enzyme activity and stability. (a) Effect on activity. Chitinase activity

was measured at 45 �C and at the indicated pH range (from 3 to 10.5). (b) Effect on stability.

Chitinase extract was incubated in various buffers (100 mmol/L) at 45 �C for different periods (3,

6, and 12 h) and different pH [4 (filled diamonds), 6 (filled squares), 8 (filled triangles), and 10

(filled circles)]. Portions of the solution were withdrawn, and the residual activity was measured

under the standard conditions of assay (modified Quecine et al. 2011)
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2008). Fahey (1988) and Fahey et al. (1991) described the first work directed at the

introduction of a heterologous gene in an endophytic microorganism for the

purpose of insect control. As a member of the biotechnology company Crop

Genetics International, he described the major steps in the construction of an

Fig. 1.5 Effects of temperature on enzyme activity and stability. (a) Effect on activity. Chitinase

was added to the reaction mixture (100 mmol/L Tris–HCl pH 7.5, CM-chitin), and the reaction was

carried out at the indicated temperatures. The maximum activity observed at 66 �C was taken as

100 %. (b) Effect on stability. Chitinase extract was incubated at 55 �C (filled diamonds), 66 �C
(filled squares), and 75 �C (filled triangles) for the time indicated. Enzyme samples (0.25 μg) were
withdrawn, and the residual activity was measured with CM-chitin-RBV as substrate (Loewe)

(modified Quecine et al. 2011)
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endophytic bacterium for the purpose of insect control. This was achieved through

the secretion of an insecticidal toxin in the host plant. He used the endophyte

Clavibacter xyli subsp. cynodontis, a Gram-positive, xylem-inhabiting bacterium,

capable of colonizing several plant species. This endophytic bacterium received a

gene from another bacterium, Bacillus thuringiensis, which is able to produce the

d-endotoxin active against insects, especially Lepidoptera and Coleoptera. There-

fore, the genetically modified bacterium is able to secrete toxin inside the plant,

protecting it against attacks by target insects (Azevedo et al. 2000).

Following the work of Fahey (1988), several other researchers belonging to the

same company published more detailed reports describing the construction of the

insect biocontrol agent. Turner et al. (1991) showed that a plasmid carrying two

copies of the B. thuringiensis subsp. kurstaki cryIA(c) d-endotoxin gene and

containing a genomic DNA fragment of C. xyli subsp. cynodontis could be

integrated into the chromosome of C. xyli subsp. cynodontis by homologous

recombination. However, the engineered bacterium exhibited insecticidal activity

in artificial diets but not in planta. Lampel et al. (1994) used an improved integra-

tive vector that, although it showed some instability, resulted in toxin production in

planta.

The presence of endophytic bacteria inside the host plant may increase the

plant’s fitness by protecting it against pests and pathogens, improving plant growth

and increasing resistance in stressful environments (Azevedo et al. 2000;

Scherwinski et al. 2007). Many studies are being carried out with both natural

Fig. 1.6 Chitinolytic effects on boll weevil development. The percent of adult boll weevils was

obtained from percent of eggs placed in the diet medium. The chitinolytic activity was the

remaining activity compared. The statistical difference between the two curves and the regress

equation was obtained by ANOVA using four replicates. The results for the diet without chitinase

(filled square) equation curve y ¼ 5.7722x � 71.795 (R2 ¼ 0.9225) and the diet with chitinase

(filled triangle) equation curve y ¼ 4.2335x � 59.416 (R2 ¼ 0.9384) differ statistically

(P > 0.05) (modified Quecine et al. 2011)
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and genetically modified microorganisms to evaluate host colonization (Germaine

et al. 2004; Ferreira et al. 2008).

Methylobacterium spp. has been described as enhancing plant systemic resis-

tance (Madhaiyan et al. 2004), plant growth, and root formation (Senthilkumar

et al. 2009). In this context, our research group decided to study the endophytic

colonization of rice seedlings and Spodoptera frugiperda J.E. Smith larvae by the

genetically modified endophytic bacterium M. mesophilicum in vitro (Rampelotti-

Ferreira et al. 2010). The endophyte M. mesophilicum strain SR1.6/6 used in

this work was previously isolated from Citrus sinensis (Araújo et al. 2002) and

labeled with green fluorescent protein (gfp) (Gai et al. 2009). The colonization of

S. frugiperda larvae and rice seedlings by the genetically modified endophytic

bacterium M. mesophilicum, and also the possible transfer of this bacterium into

the larva’s body during consumption of the seedlings, was studied. The data

obtained by bacterial reisolation and fluorescence microscopy showed that the

bacteria colonized the rice seedlings and that the endophytic bacteria present in

the seedlings could be acquired by the larvae. In that way, the transference of

endophytic bacteria from plants to insect can be a new and important strategy in

insect control using engineered endophytic bacteria.

1.5 The Potential for Bioremediation by Endophytes

Exploitation of the interactions between endophytes and plants can promote plant

health and play a significant role in bioremediations.

1.5.1 Improving Phytoremediation Through Endophytic
Bacteria

Metal-resistant endophytes are reported to be present in various hyperaccumulator

plants growing in soils contaminated with heavy metals, and they play an important

role in the survival and growth of such plants. Metal-resistant endophytes promote

plant growth by various mechanisms, such as nitrogen fixation, solubilization of

minerals, and production of phytohormones and siderophores (Rajkumar et al.

2009). The study of endophytic bacteria is important not only for understanding

their ecological role in interaction with plants but also for their possible biotechno-

logical applications, such as bioremediation and phytoremediation. The genetic

engineering of endophytic bacteria is easier than the genetic engineering of plants,

plus gene expression within endophytes might be useful as a site-monitoring tool

(Araújo et al. 2008).

Metal hyperaccumulators are plants that accumulate extreme amounts of trace

metals in their above-ground biomass when growing in metal-enriched habitats

26 P.T. Lacava and J.L. Azevedo



(Baker et al. 2000). The interactions between endophytes and hyperaccumulator

plants have attracted the attention of several investigators due to potential

applications in bioremediation and the study of the composition of bacterial

communities living in a contaminated natural environment (Lodewyckx et al.

2002; Idris et al. 2004).

For phytoremediation programs, engineered endophytic bacteria have been used

to reduce the degradation caused by water-soluble, volatile, or organic pollutants

(Barac et al. 2004; Van der Lelie et al. 2005). In some cases, it is likely that some

endophytes could metabolize a pollutant if it moves through the plant’s vessels

(Taghavi et al. 2005). However, it is possible to improve the phytoremediation

process by using recombinant endophytes modified to contain the appropriate

degradation pathway (Barac et al. 2004). Additionally, some authors (Newman

and Reynolds 2005; Van der Lelie et al. 2005) reinforce the idea of bacteria and

phytoremediation as a new use for endophytic bacteria in plants.

In this way, work from our laboratory has indicated an interesting interaction

between the soybean endophytic bacterial community and application of glypho-

sate herbicides before planting (Kuklinsky-Sobral et al. 2005). In this work, a

culture medium with glyphosate as the sole carbon source was used to isolate

endophytes, and Pseudomonas oryzihabitans and Burkholderia gladioli were the

dominant species. The results from this study indicate the potential of these

endophytic bacteria to be used in bioremediation programs.

The genus Methylobacterium (Van Aken et al. 2004) contains numerous

endophytes (Sy et al. 2001; Araújo et al. 2002; Lacava et al. 2004) and is involved

in the degradation of energetic compounds, such as 2,4,6-trinitrotoluene (TNT),

hexahydro-1,3,5-trinitro-1,3,5-triazine (HMX), and hexahydro-1,3,5-trinitro-1,3,5-

triazine (RDX). The authors suggest the use of this endophyte in bioremediation

and phytoremediation processes, where this type of microorganisms might be

partially responsible for the degradation of environmental toxins. This hypothesis

was confirmed by Siciliano et al. (2001), who observed that the addition of

petroleum hydrocarbon sediment doubled the prevalence of naphthalene

dioxygenase (ndoB)-positive endophytes in Scirpus pungens.
In our research group, Dourado et al. (2012) reported that Methylobacterium

strains were isolated from mangrove samples collected from locations either

contaminated or uncontaminated by oil spills. The tolerances of the strains to

different heavy metals were assessed by exposing them to different concentrations

of cadmium, lead, and arsenic (0.1 mM, 0.5 mM, 1 mM, 2 mM, 4 mM, and 8 mM)

(Fig. 1.7). The isolates from the contaminated locations were grouped, suggesting

that oil can select for microorganisms that tolerate oil components and can change

the methylotrophic bacterial community. Cadmium is the most toxic heavy metal

assessed in this work, followed by arsenic and lead, and two isolates of

Methylobacterium were found to be tolerant to all three metals. These isolates

have the potential to bioremediate environments contaminated by oil spills by

immobilizing the heavy metals present in the oil. In the same way, Barzanti et al.

(2007) isolated 83 endophytic bacteria from the roots, stems, and leaves of the Ni

hyperaccumulator Alyssum bertolonii. They noted that despite the high
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concentrations of heavy metals present in its tissues, A. bertolonii harbors an

endophytic bacterial flora showing a high genetic diversity as well as a high level

of resistance to heavy metals, which could potentially help plant growth and Ni

hyperaccumulation.

Many experiments that involve the inoculation of endophytic bacteria (wild or

engineered strains) with resistance to heavy metals have been conducted recently,

including Lupinus luteus, which when grown on a Ni-enriched substrate and

inoculated with the engineered Ni-resistant endophytic bacterium B. cepacia
showed a significant increase (30 %) in the concentration of Ni in the roots

(Lodewyckx et al. 2001). In another study, the engineered endophyte B. cepacia
G4 (gfp gene) strain was reported to increase plant tolerance to toluene and decrease
the transpiration of toluene to the atmosphere. Toluene is one of the four

components in BTEX (benzene, toluene, ethylbenzene, and xylenes) (Germaine

et al. 2004) contamination, and this has the potential to improve phytoremediation

by decreasing toxicity and increasing degradation of the xenobiotic component

(Barac et al. 2004). In this case, the engineered endophytic B. cepacia strain

improved phytoremediation and promoted plant tolerance to toluene.

Sheng et al. (2008) observed that the inoculation of Brassica napus with Pb-

resistant endophytic bacteria increased Pb uptake into the shoot from 76 % to 131 %

(Pseudomonas fluorescens) and from 59 % to 80 % (Microbacterium sp.) when

compared with the dead bacteria-inoculation control. Mastretta et al. (2009) found

that the inoculation of Nicotiana tabacum with the Cd-resistant endophyte

Sanguibacter sp. increased the concentration of Cd in shoot tissues approximately

threefold when compared with the un-inoculated control. These studies suggest that

it will be possible to improve the metal-extraction potential of hyperaccumulator

plants by inoculating the seeds/rhizosphere with selected metal-resistant PGPB

Fig. 1.7 Distribution of endophytic samples isolated from mangrove species of the

Methylobacterium genus showing tolerance to Cd, Pb, and As at the concentrations 0.1 mM,

0.5 mM, 1 mM, 2 mM, 4 mM, and 8 mM (Dourado et al. 2012)
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endophytes. The works cited in this review suggest that bacteria degrading recalci-

trant compounds are more abundant among endophytic populations than in the

rhizosphere of the plants in contaminated sites, which could mean that endophytes

have a role in metabolizing these substances (Siciliano et al. 2001; Jalgaonwala and

Mahajan 2011).

Ryan et al. (2007) listed some of the advantages associated with the use of

endophytic bacteria in phytoremediation of contaminated environmental soil when

compared with the use of plants alone. They include the following: (1) quantitative

gene expression of bacterial pollutant catabolic genes can be used to assess the

efficiency of the remediation process; (2) genetic engineering of a bacterial cata-

bolic pathway is easier to manipulate than a plant catabolic pathway; and (3) toxic

pollutants taken up by the plant may be degraded in planta by endophytic degraders,

reducing the toxic effects of contaminants in environmental soil on flora and fauna.

However, some disadvantages associated with the use of bacteria in plant-

associated bioremediation of contaminated environmental soil were suggested by

the same authors (Ryan et al. 2007): (1) this technology is limited to shallow

contaminants in environmental soil; (2) it is slower than traditional remediation

technologies; (3) the choice of plant can mean that it is only seasonally effective;

(4) it is associated with phytotoxic effects of contaminants; and (5) there is potential

for the environmental contaminants or their metabolites to enter the food chain if

contaminants are not completely detoxified or if the plants are consumed by local

fauna.

This research field is at an early stage. The available literature demonstrating

that the metal-resistant endophytic bacteria not only protect plants from metal

toxicity but also enhance metal accumulation in plant tissues with concurrent

stimulation of plant growth. These beneficial effects exhibited by endophytic

bacteria, together with the suggested interrelationship between microbial heavy-

metal tolerance and plant growth-promoting efficiency, indicate that inoculation

with endophytic isolates might have significant potential to improve

phytoextraction efficiency in metal-contaminated soils (Rajkumar et al. 2009).

1.6 Concluding Remarks

Endophytic bacteria are believed to elicit plant growth in many ways, including the

following: helping plants acquire nutrients, e.g., via nitrogen fixation, phosphate

solubilization, or iron chelation; preventing infections via antifungal or

antibacterial agents; out-competing pathogens for nutrients by producing

siderophores; or establishing the plant’s systemic resistance and producing

phytohormones. However, the effects and functions of endophytes in plants have

not been comprehensively defined. The challenge and goal is to be able to manage

microbial communities to favor plant colonization by beneficial bacteria. This will

be possible when a better knowledge of endophyte ecology and molecular

interactions is attained.
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Although all of the approximately 300,000 plant species have been estimated to

harbor one or more endophytes, few relationships between plants and these

endophytes have been studied in detail; the legume–rhizobia symbiosis is an

exception. Additionally, there remain many barriers to commercial usage of bacte-

rial inoculants for inducing resistance, and even more studies are necessary to

permit the usage of endophytes in this way. While there is a wide diversity of

bacteria to be explored, supporting the idea that the most efficient resistance

inducers are still to be described, genetic transformation of bacteria should also

be considered a way to group important characteristics found in different strains.

The combination of inducers of systemic resistance and endophytic characteristics

may affect future agricultural concepts, allowing safer production with a lower

impact on the environment.
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Kleiner AA (2010) Genetic diversity and plant-growth related features of Burkholderia spp.

from sugarcane roots. World J Microbiol Biotechnol 26:1829–1836

Madhaiyan M, Poonguzhali S, Senthilkumar M, Seshadri S, Chung H (2004) Growth promotion

and induction of systemic resistance in rice cultivar Co-47 (Oryza sativa L.) by

Methylobacterium spp. Bot Bull Acad Sin 45:315–324

Madhaiyan M, Poonguzhali S, Ryu J, Sa T (2006) Regulation of ethylene levels in canola

(Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing

Methylobacterium fujisawaense. Planta 224:268–278
Magie AR, Wilson EE, Kosuge T (1963) Indoleacetamide as an intermediate in the synthesis of

indoleacetic acid in Pseudomonas savastanoi. Science 141:1281–1282
Magnani GS, Didonet CM, Cruz LM, Picheth CF, Pedrosa FO, Souza EM (2010) Diversity of

endophytic bacteria in Brazilian sugarcane. Genet Mol Res 9:250–258

Mahaffee WF, Kloepper JW (1997) Temporal changes in the bacterial communities of soil,

rhizosphere and endorhiza. Microb Ecol 34:210–223

Mahaffee WF, Kloepper JW, Van Vuurde JWL, Van Der Wolf JM, Van Den Brink M (1997)

Endophytic colonization of Phaseolus vulgaris by Pseudomonas fluorescens strain 89B-27 and
Enterobacter asburiae strain JM22. In: Ryder MH, Stephens PM, Bowen GD (eds) Improving

plant productivity in rhizosphere bacteria. CSIRO, Melbourne, p 180

Malinowski DP, Belesky DP (1999) Endophyte infection enhances the ability of tall fescue to

utilize sparingly available phosphorus. J Plant Nutr 22:835–853

Mano H, Morisaki H (2008) Endophytic bacteria in the rice plant. Microbes Environ 23:109–117

Martins ES, Praça LB, Dumas VF, Silva-Werneck JO, Sone EH, Waga IC, Berry C, Monnerat RG

(2007) Characterization of Bacillus thuringiensis isolates toxic to cotton boll weevil

(Anthonomus grandis). Biol Control 40:65–68
Martins ES, Aguiar RW, Martins NF, Melatti VM, Falcão R, Gomes AC, Ribeiro BM, Monnerat

RG (2008) Recombinant Cry1Ia protein is highly toxic to cotton boll weevil (Anthonomus
grandis Boheman) and fall armyworm (Spodoptera frugiperda). J Appl Microbiol

104:1363–1371

Masclaux C, Expert D (1995) Signalling potential of iron in plant–microbe interactions: the

pathogenic switch of iron transport in Erwinia chrysanthemi. Plant J 7:121–128
Mastretta C, Taghavi S, van der Lelie D, Mengoni A, Galardi F, Gonnelli C, Barac T, Boulet J,

Weyens N, Vangronsveld J (2009) Endophytic bacteria from seeds of Nicotiana tabacum can

reduce cadmium phytotoxicity. Int J Phytorem 11:251–267

McInroy JA, Kloepper JW (1995) Survey of indigenous bacterial endophytes from cotton and

sweet corn. Plant Soil 173:337–342

Melo IS, Azevedo JL (1998) Controle biológico I. Embrapa, Jaguariuna, 262
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Miliūtė I, Buzaitė O (2011) IAA production and other plant growth promoting traits of endophytic

bacteria from apple tree. Biologija 57:98–102

Misaghi IJ, Donndelinger CR (1990) Endophytic bacteria in symptom-free cotton plants. Phyto-

pathology 9:808–811

Monteiro PB, Renaudin J, Jagoueix-Eveillard S, Ayres AJ, Garnier M, Bové JM (2001)
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Pirttilä A, Joensuu P, Pospiech H, Jalonen J, Hohtola A (2004) Bud endophytes of Scots pine

produce adenine derivatives and other compounds that affect morphology and mitigate

browning of callus cultures. Physiol Plantarum 121:305–312

Pleban S, Ingel F, Chet I (1995) Control of Rhizoctonia solani and Sclerotium rolfsii in the

greenhouse using endophytic Bacillus spp. Eur J Plant Pathol 101:665–672
Podolich O, Laschevskyy V, Ovcharenko L, Kozyrovska N, Pirttila AM (2009)Methylobacterium

sp. resides in unculturable state in potato tissues in vitro and becomes culturable after induction

by Pseudomonas fluorescens IMGB163. J Appl Microbiol 106:728–737

Ponka A, Andersson Y, Siitonen A, de Jong B, Jahkola M, Haikala O, Kuhmonen A, Pakkala P

(1995) Salmonella in alfalfa sprouts. Lancet 345:462–463

Potrich DP, Passaglia LMP, Schrank IS (2003) Partial characterization of nif genes from the

bacterium Azospirillum amazonense. Braz J Med Biol Rev 34:1105–1113

Proctor ME, Harnacher M, Tortorello ML, Archer JR, Davis JP (2001) Multistate outbreak of

Salmonella serovar Muenchen infections associated with alfalfa sprouts grown from seeds

pretreated with calcium hypochlorite. J Clin Microbiol 39:3461–3465

Puente ME, Li CY, Bashan Y (2009) Rock-degrading endophytic bacteria in cacti. Environ Exp

Bot 66:389–401

Pugsley AP, Oudega B (1987) Methods for studying colicins and their plasmids. In: Hardy KG (ed)

Plasmids: a practical approach. IRL, Oxford, pp 105–161

Purchase BS (1980) Nitrogen fixation associated with sugarcane. In: Proceedings of the South

African Sugar Technologists Association, pp 173–176

Qiu F, Huang Y, Sun L, Zhang X, Liu Z, Song W (2007) Leifsonia ginsengi sp. nov., isolated from
ginseng root. Int J Syst Evol Microbiol 57:405–408
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Chapter 2

Beneficial Effects of Plant Growth-Promoting

Rhizobacteria on Improved Crop Production:

Prospects for Developing Economies

A.O. Adesemoye and D. Egamberdieva

2.1 Introduction

Bacteria that exert beneficial effects on plant development known as plant growth-

promoting rhizobacteria (PGPR) have been reported widely. One of the basic

requirements for the effectiveness of PGPR is their ability to colonize hosts’

rhizosphere, rhizoplane, or the root interior (Glick et al. 2007). Some inoculants

enter the root interior to establish endophytic populations with adaptability to the

niche and benefits to the host plants (Compant et al. 2005; Kloepper et al. 1999)

while some increase root surface area, thus enhancing nutrients uptake, and in turn,

induce plant productivity (Adesemoye et al. 2008a, 2009). In a review, Adesemoye

and Kloepper (2009) compiled the benefits derivable from plant–PGPR interactions

to include the following: improvements in seed germination rate, root development,

shoot and root weights, yield, leaf area, chlorophyll content, hydraulic activity,

protein content, and nutrient uptake—including phosphorus and nitrogen.

The use of beneficial microbes in agricultural production systems started long

time ago, and there is increasing evidence that beneficial microbes can enhance

plants’ tolerance to adverse environmental stresses, which include salt stress

(Egamberdieva 2008), drought stress (Zahir et al. 2008), weed infestation (Babalola

2010), nutrient deficiency, and heavy metal contaminations (Sheng 2005). The term

“induced systemic tolerance” has been used to describe the capacity of PGPR to

elicit tolerance to salt and drought (Yang et al. 2009). A range of salt-tolerant

rhizobacteria identified so far has shown beneficial interactions with plants in
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stressed environments. These PGPR (e.g., Rhizobium, Azospirillum, Pseudomonas,
Flavobacterium, Arthrobacter and Bacillus) utilize osmoregulation; oligotrophic,

endogenous metabolism; resistance to starvation; and efficient metabolic processes

to adapt under dry and saline environments (Lugtenberg et al. 2001;

Egamberdiyeva and Islam 2008). The bacteria, with their physiological adaptation

and genetic potential for increased tolerance to drought, increasing salt concentra-

tion, and high temperatures, could improve plant production in degraded sites

(Maheshwari et al. 2012; Yang et al. 2009).

Many mechanisms have been reported for the activities of PGPR (Glick et al.

2007). Some strains produce metabolites such as hydrogen cyanide (HCN), 2, 4-

diacetylphloroglucinol (DAPG) (Duffy et al. 2004); antibiotics, e.g., phenazine

antibiotics (Chakraborty et al. 2009); and volatile compounds that stimulate plant

growth (Ryu et al. 2003). Other strains produce siderophores and play roles in

sequestering iron for plants, help in delayed senescence, biological control (Buyer

et al. 1993; Kloepper et al. 1991), and produce plant hormones such as gibberellins,

cytokinins, abscisic acid, and auxins, which at low concentrations influence plant

physiological processes such as host’s root respiration rate, metabolism, and root

abundance.

Specifically, gibberellins influence seed germination, stem elongation and devel-

opment, flowering, and fruit setting of plants, and auxins, especially indole acetic

acid (IAA) and indole acetamide (IAM), influence root development, tissue differ-

entiation, and responses to light and gravity. Lowering of ethylene (Saleem et al.

2007) levels in plants through the synthesis of the enzyme 1-amino-cyclopropane-

1-carboxylate (ACC) deaminase that hydrolyzes the ethylene precursor ACC is

another well-reported mechanism for growth promotion by PGPR (Glick et al.

2007; Shaharoona et al. 2007). The role of ACC deaminase-producing PGPR was

reviewed extensively by Saraf et al. (2010).

Evidently, PGPR holds enormous prospects in improved and sustainable plant

production, including enhanced plant tolerance to stress, better plant nutrient uptake

and reduced use of chemical inputs. The roles of PGPR in nutrient uptake and stress

management are emerging areas in agriculture that is not yet well understood;

consequently, the benefits are yet to be maximized anywhere in the world. It is

even less explored in many developing economies and may seem entirely new in

some regions. Efforts to better understand the role of inoculants and biofertilizers in

nutrient uptake and plant response to environmental stress are more compelling

now that the continuous use of high amounts of chemical inputs are generating

environmental problems and not sustainable.

The concept of integrated nutrient management (INM) system as proposed by

Adesemoye and Kloepper (2009) relating to the use of biofertilizers in combination

with chemical fertilizers to stimulate uptake of nutrients remains very important.

The benefits of INM to different cropping systems have been further discussed by

other authors (Joshi et al. 2006; Kumar et al. 2009a, b; Maheshwari et al. 2011).

Maximizing the impacts of beneficial microbes towards enhancing the response of

plants to environmental stress (Egamberdieva 2011; Glick et al. 2007) is also very

important. This chapter discusses the benefits of PGPR in broad terms, but attempts
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were made to present specifics about the use of PGPR to enhance plant nutrient

uptake, for better plant response to environmental stress, and unexplored potentials

in developing economies.

2.2 Major Crop Production Problems in Developing Regions

The Food and Agriculture Organisation (FAO) report titled “World agriculture:

towards 2015/30” among others, discussed global long-term prospects for trade and

sustainable development. One of the conclusions in the report was that the devel-

opment of local food production in low-income countries, which depend highly on

agriculture for employment and income, is the one factor that dominates all others

in determining progress or failure in improving their food security. The report

predicted that without the development of local food production and other related

efforts, the target of halving the number of undernourished persons by no later than

2015 is far from being reached and may not be accomplished by 2030.

Socioeconomic, political, cultural, environmental factors, low technological

development, bad agricultural methods and policies are major hindrances against

agricultural development in many developing economies. There may be limited

biological activity in response to environmental stresses such as salt and drought in

certain areas resulting in low soil nutrients. In some regions, vast areas of land are

highly weathered, very low in macro- and/or micronutrients or limited in arable

land resources. Low level of soil fertility is a major hindrance against agriculture in

some parts of Africa, South America, and many other regions, which makes

productivity very low especially in locations with little or no use of fertilizers.

There is continuous need for nitrogen and phosphorus, which are limiting nutrients

(Graham and Vance 2000).

In arid regions of low rainfall and high evaporative demand, the causes of soil

salinity are (1) cultivation of naturally saline lands, (2) rise in secondary salinity

because of inflow of saline groundwater from higher plateau, and (3) increase in

soluble salts concentration of water used for irrigation because of the recycling of

drainage water for irrigation (Shirokova et al. 2000). Soil salinization is reducing

the area that can be used for agriculture by 1–2 % every year (FAO 2002). Salinity

causes a disturbance of plant–microbe interaction which is a critical ecological

factor to help further plant growth in degraded ecosystems (Requena et al. 2001;

Egamberdiyeva et al. 2007). As a result of soil salinization, plants are under saline

or water unbalance stress and become more vulnerable to diseases, often caused by

pathogenic fungi which can hardly be overcome by conventional methods of pest

management (Kurth et al. 1986; Werner and Finkelstein 1995). Gratuitous use of

fungicides and type of irrigation creates a strong concern regarding environmental

pollution and development of fungicide resistance (Alva et al. 2000).

The benefits of resident soil microbes are hardly explored, and when commercial

inoculants are used, they are usually not derived from microbes isolated locally and

so may not be effective. Overall, the result is dismal agricultural productivity.
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These underscore the urgent need to develop management practices and biotechno-

logical applications that can improve soil productivity, environmental health,

reduce erosion, and enhance food security. In fact, attempts to meet food needs in

some regions have led to the adoption of agricultural practices capable of degrading

the soil, such as high use of chemical inputs, e.g., fertilizers. Low efficiency in the

uptake of fertilizer as identified by Adesemoye and Kloepper (2009) is prompting

the use of high amounts of fertilizer. Consequent upon ineffective soil management

is many environmental maladies, two of which Hungria and Vargas (2000)

identified as nutrient depletion and soil acidification. Therefore, improvement in

plant nutrient uptake is a requirement for overall reduction in fertilizer use and

sustainable crop productivity.

2.3 Reported Use and Prospects of Microbes and PGPR

in the African Region

Akanbi et al. (2007) compared the application of manure extract from cassava

(Manihot esculenta) peel and Mexican sunflower (Tithonia rotundifolia) composts

as foliar spray or liquid fertilizer with NPK in Nigeria. The authors also tested the

extracts as pesticide and reported that the growth of fluted pumpkin (Telfairia
occidentalis) plants with foliar spray of compost extracts from cassava peel and

Mexican sunflower was significantly the same with those that received NPK

fertilizer. Depending on the ratio of extract used, there was certain level of protection

against five insect pests tested, which included leaf beetle (Lagria villous T.),

red pumpkin beetle (Aulacophora spp.), cotton leaf roller (Sylepta derogate F.),

cut worms (Noctuidae spp.), and green grasshopper (Zonocerus variegatus)
(Akanbi et al. 2007).

Babalola and coworkers conducted pot experiments in Nigeria and Kenya to

determine the growth effect of three different rhizobacteria (Pseudomonas
sp. 4MKS8, Klebsiella oxytoca 10MKR7, and Enterobacter sakazakii 8MR5) on

maize under Striga hermonthica infestation. The three bacteria were selected based
on their plant growth-promoting effects (Babalola et al. 2007). Some of the

treatments showed statistically significant plant growth promotion and increased

agronomic characteristics of maize. The authors studied 1-amino-cyclopropane-1-

carboxylic acid (ACC) deaminase gene in Pseudomonas sp. 4MKS8 and Klebsiella
oxytoca 10MKR7, and Enterobacter sakazakii 8MR5 and found that not all plant

growth-promoting rhizobacteria contain the enzyme ACC deaminase.

Ugoji et al. (2006) examined the impacts of seed coating with Bacillus sp. on the
storage of seeds of maize (Zea mays L.), bean (Phaseolus vulgaris L.), lettuce

(Lactuca sativa L.), and cucumber (Cucumis sativus L.) over a 12-month period in

South Africa. One important finding was that microbial populations decreased from
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month 7 to month 12 which, according to the authors, indicated protection of the

seed by the applied Bacillus sp. against growth of pathogens and saprophytes.

In a study conducted in Nigeria, Adesemoye and Ugoji (2006) examined the

effectiveness of plant growth-promotion ability of Pseudomonas sp. in three test

crops—okra (Abelmoschus esculentus L.), tomato (Lycopersicon esculentum L.),

and African spinach (Amaranthus sp.). The aim of the study was to determine

whether inoculation method had impacts on PGPR’s effectiveness. They found that

tested Pseudomonas isolates promoted crop growth and had great potentials as

PGPR in the region. The test on two methods of bacterial inoculation (soaking and

coating) produced statistically similar results of plant growth enhancement.

Adesemoye et al. (2008a) compared PGPR properties between Bacillus subtilis
and Pseudomonas aeruginosa as representatives of their two genera. The authors

reported similarities but no significant difference at p < 0.05 between the overall

performances of B. subtilis and P. aeruginosa. It was suggested that Bacillus may

be relatively more versatile than Pseudomonas as PGPR because of the ability to

form endospores, which can make them retain viability for long periods either in

storage or in the soil.

Jida and Assefa (2011) reported that Ethiopian soils harbor highly efficient

nitrogen-fixing lentil-nodulating rhizobia. They collected 30 isolates of such

rhizobia from farmers’ field soils in central and northern parts of Ethiopia and

selected for symbiotically efficient ones, which possess plant growth-promoting

characteristics. Under glasshouse conditions, they found characteristics such as

IAA production in 36.7 % and inorganic phosphate solubilization capacity in

16.7 %. Additionally, one or a combination of carbon sources and nitrogen sources

utilization, tolerance to acidic or alkaline pH, metal toxicity, and antibiotics pro-

duction were found in most isolates (Jida and Assefa 2011).

One study in Egypt examined tripartite interactions among bacteria

(Azospirillum brasilense), mycorrhiza (Glomus clarum), and legume (Vicia faba)
under five saline (NaCl) levels in pot cultures (Rabie and Almadini 2005). Signifi-

cant effects of inoculation were reported in the plants for salinity tolerance,

mycorrhizal dependency, phosphorus level, phosphatase enzymes, nodule number,

nitrogen uptake, protein content, and nitrogenase enzymes. Based on the findings,

the authors suggested that bacterial–AMF–legume tripartite symbioses could be a

new approach to increasing the salinity tolerance of legume plants.

Galal et al. (2001) demonstrated the beneficial influence of co-inoculation of

Azospirillum lipoferum and Bacillus megaterium for providing balanced nitrogen

and phosphorus nutrition of wheat plants in Egypt. El-Azouni (2008) observed

significant increase of dry matter, N, P uptake and yield of soybean grown in

Egyptian soil inoculated with phosphate-solubilizing fungi A. niger and P. italicum.
Rhizobium leguminosarum bv. trifolii was reported to colonize rice roots

endophytically in the fields where rice is grown in rotation with Egyptian berseem

clover (Trifolium alexandrinum) and can supplement 25–33 % of the recommended

rate of N fertilizer for rice (Yanni et al. 1997). All these studies are evidences that

PGPR have high potentials in Africa.
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2.4 Reported Use and Prospects of Microbes and PGPR in the

Asian Region, Including Asia Pacific and Middle East

The reduction of chemical fertilizers by using biological fertilizers based on

bacteria involved in nitrogen fixation is one of the effective steps in sustainable

agriculture. Owing to population growth and increasing food demand, intensive and

environment-friendly agriculture such as biofertilizers and biopesticides have

become the ideal model for the Asian region. According to the reports of Jee

(2009), a total of 138 companies were producing hundreds of commercial products,

and 23 biopesticides are now registered in Korea, and they are based on strains such

as Paenibacillus polymyxa, Bacillus subtilis, B. amyloliquefaciens, Paecilomyces
fumosoroseus, and Streptomyces goshikiensis. Quyet-Tien et al. (2010) reported

regarding P. polymyxa KNUC265 strain, which increased plant growth of pepper

and elicited both induced systemic resistance (ISR) and plant growth promotion,

suggesting that it could be potentially used in improving the yield of pepper and

other crops.

Meunchang et al. (2006) selected effective PGPR strains which increased plant

growth and nutrient uptake of rice and indicated the possibility of producing

biofertilizer for rice production in Thailand. In another work, Young et al. (2003)

studied the effect of a combined treatment of multifunctional biofertilizer (mixture

of Bacillus sp. B. subtilis, B. erythropolis, B. pumilus, and P. rubiacearum) on the

growth of lettuce in Taiwan and found 25 % increase of lettuce yield over the

control. In Mongolia, it was observed that Bacillus pumilus 8N-4 can be used as a

bio-inoculant for biofertilizer production to increase the crop yield of wheat variety

Orkhon (Hafeez et al. 2006).

Rice (Oryza sativa) could be described as the major food crop across the world’s

population, especially in Asian populations, and as noted by Kumar et al. (2011),

more than 90 % of rice is produced in Asia. Rice plants require large amounts of N

for their growth, development, and grain production (Sahrawat 2000). In Vietnam

the application of BioGro based on various PGPR strains resulted in increase in rice

growth and yield (Nguyen et al. 2003; Nguyen 2008). Mia and coworkers (2009)

observed that Rhizobium inoculation significantly initiated more root hairs in rice

seedlings. The authors also studied the effects of rhizobacterial inoculation on

growth and nutrient accumulation of tissue-cultured banana plantlets under low

N-fertilizer regime in Malaysia, and they found an increase in growth and yield of

plant after inoculation (Mia et al. 2007). Many diseases that attack rice generate

global concerns due to the popularity of the crop. However, PGPR could play very

important roles in managing the diseases. For instance, PGPR has been reported

exhibiting high potentials in the management of sheath blight of rice caused by

Rhizoctonia solani AG 1-1A, particularly through combined application of PGPR

with chemical fungicides in integrated disease management (IDM) systems (Kumar

et al. 2011).

With the developed commercial PGPR (Ecomonas) in India, the rice sheath

blight caused by Rhizoctonia solani reduction over the control was 37.7 % and grain
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yields significantly increased (3,901 and 1,938 kg/ha) over control (2,690 and

1,550 kg/ha) (Kumar et al. 2009a). Also in India, inoculation with vesicular

arbuscular mycorrhizal fungi (Glomus mosseae, G. fasciculatum, Acaulospora
laevis, and Gigaspora gilmorei) resulted in increased plant height, dry weight,

number of pods, and nutrient content of chickpea (Kumar et al. 2009a).

Beneficial characteristic of PGPR has been reported in Malaysia on potato

(Yasmin et al. 2009). The authors screened 15 PGPR strains for indole acetic

acid (IAA) production (with and without addition of the precursor L-tryptophan

[L-TRP]), phosphate-solubilizing activity, nitrogen synthesis, antagonistic activity

against fungal pathogens, siderophore production, and intrinsic antibiotic resis-

tance. All isolates produced IAA and grew in N-free media, which the authors

suggested was an indication of N “production.”

In Indonesia, Supanjani et al. (2006) conducted experiments to evaluate whether

applications of lipochitooligosaccharides (LCOs) and inoculation with rhizobia

could improve the uptake of calcium into soybean (Glycine max [L.] Merr.) leaves

by inoculating with rhizobia or application of Nod factors LCOs. Two strains of

Bradyrhizobium japonicum reportedly increased the uptake of labeled Ca, while a

nodC-mutant incapable of producing LCO did not. Also, rhizobia that do not

normally nodulate soybean (Rhizobium leguminosarum and Sinorhizobium
meliloti) did not affect calcium uptake, nor did the tetramer or pentamer of chitosan

or lumichrome. However, Rhizobium sp. NGR234, which can nodulate certain

soybean without effective N2 fixation, did not affect calcium uptake. Based on

the findings, Supanjani et al. (2006) suggested that the rhizobial symbiosis can

improve early calcium uptake into soybean plants, in addition to nitrogen fixation.

The availability of K and P in arid saline soils of China is limited. In such soils

having bacterial strains that are able to solubilize “unavailable” forms of K- and

P-bearing minerals to bring the K and P into solution is an important approach

(Ullmann et al. 1996). Sheng (2005) observed that Bacillus edaphicus NBT strain

increased K content of cotton and rape plants by 30 % when the soil was treated

with insoluble K sources. In other field experiments in China, the plant biomass,

nutrient uptake, and yield of wheat were increased by phosphorus-solubilizing

bacteria (PSB) Bacillus strains (Chen et al. 2006).

In Russian region, there are several commercially available biofertilizers and

plant protectors against plant diseases caused by Fusarium graminearum,
F. culmorum, and F. avenaceum. Effectiveness of biofertilizers based on strains

Azotobacter chroococcum, Bacillus mucilaginosus, and Pseudomonas fluorescence
P 469 has been tested in field trials with winter and spring wheat, spring barley,

potato, and sugar beet in different soils in Central Russia (Zhigletsova et al. 2010;

Kutyova et al. 2002). In early studies, Belimov et al. (1995) reported positive effect

of mixed cultures of nitrogen fixers Azospirillum lipoferum, Arthrobacter mysorens,
and Agrobacterium radiobacter on grain yield and N uptake of barley in Russia.

Hasnain and Sabri (1996) showed that inoculation of wheat with Pseudomonas
spp. stimulated plant growth by reducing plant uptake of toxic ions and increasing

the auxin content of wheat grown in Pakistan. Similar results were observed by

Afzal et al. (2005) where combined inoculation of nitrogen-fixing bacteria
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(Rhizobium leguminosarum) with PSB Pseudomonas sp. strain 54RB increased dry

matter and yield of wheat. In 2008, Kang and coworkers showed the capacity of

Aspergillus spp. PS 104 to solubilize rock phosphate in soil-amended medium

(Kang et al. 2008). Shaharoona et al. (2007) tested several Pseudomonas spp.

strains in the field to determine their efficacy to increase growth and yield of

wheat. Nosheen et al. (2011) reported that PGPR inoculation of A. brasilense and
P. stutzeri either alone or in combination with half dose of chemical fertilizers was

highly effective in improving root morphology and growth in safflower.

Naveed et al. (2008) reported that application of organic fertilizer and Pseudo-
monas strains significantly improved the growth (up to 39 %) and yield of maize.

They found that P. fluorescens significantly increased plant height (16 %), the

number of grains per spike (11.7 %), and grain yield (39 %) compared to non-

inoculated control. Hafeez et al. (2006) showed that biofertilizer (BioPower) gave

50–70 % savings in nitrogen fertilizer and 20 % increase in rice in Pakistan. The

bacterial-based fertilizer increased the yield of wheat and maize and protected

plants from fungal disease. It was reported that the PSB-plant inoculations resulted

in 10–15 % increases in crop yields and P uptake in 10 out of 37 experiments in

India. In another study, Tomar et al. (1996) reported the efficiency of a PSB

(Pseudomonas sp.) on the growth and yield of gram (Cicer arietinum).
Similar results were observed where combined inoculation of Rhizobium and

PSB (Pseudomonas striata and Bacillus polymyxa) led to increase in nodulation,

growth, and yield of chickpea under greenhouse conditions. This was associated

with increase in nitrogenase activity in nodules and phosphorous content in plants

(Khurana and Sharma 2000). In other works, Verma et al. (2010) observed that

chickpea inoculated with Rhizobium leguminosarum subsp. ciceri annually pro-

duced up to 176 kg N/ha as a result of significant stimulation of plant growth.

Hameeda et al. (2006) reported that two P-solubilizing bacteria (Serratia
marcescens EB-67 and Pseudomonas spp. CDB-35) increased the biomass of

maize by 99 % and 96 %, respectively, under greenhouse conditions.

Egamberdiyeva et al. (2002) reported on the effect of a Pseudomonas
fluorescens PsIA12 and Pantoea agglomerans on the growth of maize in the field,

and bacterial strains were found to significantly increase root development, shoot

growth, and K uptake of maize. The application of Bradyrhizobium japonicum
enhanced the number of nodules, dry weight of plant, grain yield, and protein

content in soybean grown in salinated soils of Uzbekistan (Egamberdiyeva et al.

2004). Seed inoculation of common bean (Phaseolus vulgaris) by Pseudomonas
chlororaphis TSAU13 and P. extremorientalis TSAU20 resulted in improved root

and shoot biomass in nutrient-deficient soil of Uzbekistan (Egamberdieva 2011).

Priming of seedlings with selected PGPR strains reduced Fusarium root rot of

cucumber to as low as 10 % and showed a significant stimulatory effect on plant

growth, increasing the dry weight of whole cucumber plants up to 62 % and fruit

yield up to 32 % in comparison to the nonbacterized control (Egamberdieva et al.

2010). The inoculation of cotton seeds with salt-tolerant phosphate-solubilizing

bacteria Rhizobium meliloti URM1 combined with phosphate had a significant
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stimulatory effect on total dry matter, shoot and root dry weight, yield, and P

content (Egamberdiyeva et al. 2004).

The data below were obtained in recent experiments with tomato grown in

salinated soil and inoculated with P. putida TSAU1, P. chlororaphis TSAU13,

and P. extremorientalis TSAU20. The inoculants increased the growth and yield of
tomato (Table 2.1).

The plant height were stimulated from 26 to 28 % after inoculation of tomato

seeds with bacterial strains P. putida TSAU1, P. putida TSAU13, and P. extremor-
ientalis TSAU20 compared to those in the control treatment. The yield of tomato

increased up to 22 % after bacterial treatment. In wheat, traits such as grain yield

and biological yield were also significantly increased by inoculation with PGPR

P. extremorientalis TSAU20 and P. putida TSAU1 (Table 2.2).

As evidenced in the table, the grain yield increased after inoculation with

P. extremorientalis TSAU20 and P. putida TSAU1 up to 21 % compared to

non-inoculated control plants. The inoculation also increased biological yield by

28 % compared to control plants.

In Iran, Azotobacter in combination with PSB had been shown to increase the

plant height, dry weight, and yield of maize up to 30 % over the control (Gholami

et al. 2009). In another study, Khorshidi et al. (2011) showed that application of

fertilizers with Pseudomonas fluorescens and Azospirillum lipoferum had a signifi-

cant effect on rice yield in Iran. Rokhzadi et al. (2008) reported that combined

inoculation of Azotobacter, Azospirillum, Pseudomonas, and Mesorhizobium
resulted in promotion of grain yield and biomass in chickpea in Iran. In Turkey,

seed inoculation of barley with N2-fixing bacteria P. polymyxa RC05, P. putida
RC06, and R. capsulatus RC04 increased root and shoot weight by 54 % and N

uptake. Pseudomonas strains also increased the yield of sugar beet (Çakmakçi et al.

2001). Evidently, PGPR and biofertilizers have great potentials in agricultural

productions in Asia, at least in the specific regions of isolation.

Table 2.1 Effects of PGPR strains on tomato cv. Belle) shoot length and fruit yield in salinated

soil

Treatments Plant height (cm) % Fruit yield (kg/m2) %

None 118.2 � 3.9 100 13.9 � 1.5 100

P. putida TSAU1 154.4 � 4.9* 130 16.4 � 1.6* 117

P. chlororaphis TSAU13 149.8 � 7.1* 126 15.6 � 1.2* 112

P. extremorientalis TSAU20 152.5 � 7.5* 128 17.0 � 1.2* 122

The temperature range was day 28–32 �C and night 16–18 �C
*Significantly different from the control at P < 0.05

Table 2.2 Effects of biological control agents on wheat growth and yield in salinated soil

Treatments Grain yield (g/plant) % Biological yield (g/plant) %

Control 19.8 100 62.2 100

TSAU20 24.0* 121 78.7* 126

TSAU1 22.4* 113 80.1* 128

Bacterial strains were P. extremorientalis TSAU20 and P. putida TSAU1

*Significantly different from the control at P < 0.05
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2.5 Biological and Edaphic Factors That May Affect PGPR

Effectiveness in Different Regions

Many countries in the world have been using bacterial fertilizers in agriculture

(Dashti et al. 1997), and it is envisaged that the usage will increase but also expand

to other regions. This optimism is predicated on the fact that the apathy against

PGPR and biofertilizers which arose mainly from the reported variability in perfor-

mance on the field is beginning to fade out. This makes it important to discuss

possible factors/conditions that can affect the performance and effectiveness of

PGPR and how the issues can be handled. Some of the important factors perceived

to be hindering wide acceptance and use of PGPR are variability in colonization

efficiency, rhizosphere competence, and field performance. Arguably, the most

important factor that affects PGPR performance is colonization of the host. For

instance, a strain with biological control potentials in vitro may be unable to exhibit

the trait in the field if it is incapable of successful colonization of the host.

It has been discussed earlier in this chapter that plant growth stimulation and

biological control of plant diseases by rhizobacteria involve one or more

mechanisms which include production of phytohormones, antibiosis, parasitism,

competition for nutrients and niches, and induced host resistance (Lugtenberg and

Kamilova 2004; Adesemoye et al. 2009). Notably, abiotic and biotic factors may

influence the different mechanisms and limit the interactions between plant and

beneficial bacteria, resulting in less than acceptable performance in plant growth

promotion and management of diseases (Egamberdiyeva and Hoflich 2002, 2003).

The data below exemplifies how abiotic factor (soil type) can affect the activities

of PGPR. The biological control of cotton root rot caused by F. oxysporum using

different antagonistic bacteria species showed that soil types have effects on

bacterial abilities to control this root pathogen of cotton (Table 2.3).

Infestation of the soil with F. oxysporum resulted in an increase of the percent-

age of diseased plants from 69 to 76 in two different soils. Priming of seedlings with

the five selected bacterial strains P. alcaligenes PsA15, B. amyloliquefaciens
BcA12, B. polymyxa BcP26 and M. phlei MbP18 reduced this proportion to as

low as 26 % in sierozem soil but 39 % in cambisol soil in comparison to the

Table 2.3 Control of cotton root rot by antagonistic bacteria in two different soils

Treatmentsa
Diseased plants

Cambisol Sierozem

Control, F. oxysporum 69 � 5.8 76 � 9.8

P. alcaligenes PsA15 43 � 11.2 26 � 10.2*

B. amyloliquefaciens BcA12 50 � 8.2 31 � 9.1*

B. polymyxa BcP26 48 � 6.8 37 � 7.2

M. phlei MbP18 39 � 9.1* 30 � 6.9*

*Significantly different from the negative control at P < 0.05
aBacteria were coated on pre-germinated cotton seeds, and plants were grown under open natural

conditions in pots infested with F. oxysporum spores (3.0 � 107 spores/kg)
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non-inoculated control. Overall, the bacterial strains were more effective in

sierozem soil than in cambisol soil. It is probable that the physiological adaptation

of bacterial strains supported their beneficial activity much better in soil from where

they were isolated.

Also, the availability level of macro- and micronutrients in soil has high effects

on the performance of PGPR. According to Choudhury and Kennedy (2004), the

efficiency of plant-associated N2 fixation by diazotrophic bacteria may be ham-

pered by a limited supply of energy and substrate. Other factors that could affect

inocula success include temperature, soil type, N content, salt concentration, and

moisture content. Numerous studies have shown that soil salinity decreases nodu-

lation and dramatically reduces N2 fixation and nitrogenase activity of nodulated

legumes, as reviewed by Zahran (1999). It has been demonstrated that the perfor-

mance of PGPR after inoculation into the rhizosphere is affected significantly by

competition for nutrient and niches with indigenous microflora (Kamilova et al.

2006; Strigul and Kravchenko 2006).

Rashid et al. (1997) reported that response of wheat to bacterial inoculation was

variable in different ecological zones of Punjab, Pakistan, ranging from 10 to 35 %

increase in yield over control. The inconsistency in results might be due to many

factors such as the complex interactions among hosts, rhizobacteria, pathogens,

climate, and soil environment. Crop cultivars is another important factor as

demonstrated in a study where inoculation of wheat with Pseudomonas strains

improved plant growth in salinated soil of Uzbekistan at a rate that varied

depending upon the wheat cultivars used (Egamberdieva 2010). It is recommended

that selection for cultivars should consider bacterial inoculants so that the selected

cultivar is the one that carries the trait of successful association with such bacteria.

Understanding the mechanisms of growth stimulation and plant disease control by

rhizobacteria and impact of abiotic factors on their interactions and beneficial

effects are useful in the application of PGPR in countries with varied climatic

conditions, enabling a prediction of the success of a PGPR inoculation with the

specific variety of crops to be cultivated.

2.6 Unexplored Possibilities of PGPR in Developing

Economies: Biofertilization and Biocontrol

It was suggested by Adesemoye and Kloepper (2009) that PGPR as biofertilizers or

microbial inoculants can be important components of an integrated nutrient man-

agement system. However, the interactions among PGPR and plants are still not

well understood, especially in field applications and different environments

(Niranjan et al. 2005). Therefore, there is need for more studies on plant–microbe

interactions and their activities in different regions and ecologies, including

stressed environments, for instance, in arid and tropical regions. Availability of

more information will enable the development and widespread acceptance of new
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agricultural technologies, which can improve soil ecology, plant development, and

resistance against diseases and pests. Akanbi et al. (2007) believed that if compost

were available in nutrient-rich liquid formulations that involve the use of less

quantity, and easier application, it will be more popular among farmers in Nigeria.

Cereals are major crops in many developing economies, and it has been shown

by Kennedy and Tchan (1992) that biofertilizers can enhance growth, disease

control and yield of cereals, but this is yet to be well explored in many parts of

the developing regions of the world. Frequent rhizosphere colonizers of cereal

crops and grasses include N-fixing bacteria such as Azospirillum, Acetobacter,
Azoarcus, Herbaspirillum spp., and Aeromonas (Dobbelaere et al. 2001; Mehnaz

et al. 2001). Bacteria reportedly have greater adaptability to rice ecosystems

compared to fungal antagonists, and PGPR have been used vigorously in

controlling rice diseases (Kumar et al. 2011). Possible benefits of PGPR on rice

include biological control of diseases (especially through induced systemic resis-

tance); better nutrient uptake—nitrogen, phosphorus, and ferric iron; enhanced

seedling growth; increased yield; and sustainable use of agricultural products.

Salinity being one of the major problems in many developing countries in Asia;

the use of salt-tolerant bacterial inoculants is a possible solution that can increase

plant growth, induce seed germination, improve seedling emergence, and protect

plants from the deleterious effects of some environmental stresses. Velagaleti and

Marsh (1989) showed that the development of salt-tolerant symbioses is an absolute

necessity to enable cultivation of leguminous crops in salt-affected soils.

Egamberdieva and Kucharova (2009) suggested that screening and application of

the enhanced potential root-colonising rhizobacteria is essential for developing

sound strategies to manage the rhizosphere in such a way that it becomes more

difficult for pathogens to colonise the rhizosphere; thus, these beneficial bacteria

can engineer positive interactions in the rhizosphere and stimulate plant growth

under saline conditions. In some locations, soils are poorly aerated and water-

logged, or well aerated but calcareous. The impact of microbial activity in the

rhizosphere on roots directly on mobilization and/or immobilization or indirect

effect on root morphology and/or physiology (Babalola 2010) can be utilized to

manipulate nutrients uptake.

Pathogens, especially soil-borne, cause inestimable crop losses in many devel-

oping regions with more noticeable consequences in Africa. Soil suppressiveness of

plant diseases (Weller and Thomshow 1993) is an important consideration that

should be continuously studied for possibility of identifying and exploiting the

benefits from the specific resident organisms involved. Additionally, the manipula-

tion of the plant–microbe interactions to control quorum sensing (QS) systems in

microbes to the benefit of crop production is another focus area with possible

benefits awaiting exploitation. Quorum sensing (QS) in which acyl homoserine

lactones are utilized is important in many plant–microbe interactions, as in Pseu-
domonas aureofaciens (Babalola 2010; Boyer et al. 2008).

Root exudates, a fraction of rhizodeposition, are rich in carbon and energy

sources that affect microbial growth and development in the rhizosphere. Other

fractions of rhizodeposition—lysates, mucilage, secretions, and dead cell
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materials—may play some roles (Dardanelli et al. 2010; Sommers et al. 2004).

These dynamics especially interactions of root exudates and PGPR activity which

lead to better root growth have been previously explained by Adesemoye et al.

(2009). However, more study and better understanding of the dynamics may help in

better use of PGPR in crop production in developing regions, and the knowledge

may have universal applications across all regions of the world—developing and

developed alike.

2.7 Conclusion

One of the immediate reasoning to improve agricultural productivity and develop-

ment is the use of more chemical fertilizers. However, with the resultant effects of

heavy fertilizer use in many regions of the world, it is compelling to look for

alternatives. Based on current events, the argument of Adesemoye et al. (2009) that

the goal of reducing fertilizer usage will be to this century as what the goal of

reducing pesticides was to the last century remains valid. Therefore, the integrated

nutrient management (INM) system proposed in that paper, i.e., integration of

microbial inoculants with less fertilizer, should be considered in many situations

as it promises high crop productivity and agricultural sustainability.

The use of fungicides, bactericides, and pesticides generally continue to generate

concerns, so biological control is still as relevant as it was many decades ago. The

reason for the inconsistencies reported in some regions with biological control of

diseases is not yet well understood though its relevance as a major limitation to

widespread acceptance of biofertilizers and commercial PGPR products has been

reducing as compared to almost two decades ago when an observation of

inconsistencies was made by Weller and Thomshow (1993).

The complex nature of the natural soil environment is a possible explanation for

the variation in effectiveness of PGPR strains or products, particularly when such

products were used far away from where the microbial inoculants were originally

isolated. This implies that there is high chance that commercial PGPR products

made from isolates collected in a region may perform better in that region than if it

was from strains collected in another region continent or country. Research should

focus on identifying effective PGPR strains in each region.

In agreement with Dardanelli et al. (2010), the presence of microorganisms in

the soil is critical to the maintenance of soil function, in both natural and managed

agricultural soils. The microbes are involved in key processes such as soil structure

formation, decomposition of organic matter, toxin removal, and the cycling of

elements—carbon, nitrogen, phosphorus, potassium, and sulfur. It is also clear

that beneficial microorganisms play key roles in suppressing soil-borne plant

diseases and in promoting plant growth and changing the vegetation (Doran et al.

1996).

Efforts should be directed towards maximizing the identified benefits of PGPR

or biofertilizers in all developing economies. If the benefits of PGPR in crop
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production can be maximized, this will certainly help in the fight against hunger.

Importantly, regions in developing economies may have to use more of products

that are based on local isolates because as emphasized by Adesemoye et al. (2009),

no microbial inoculant can be universal for all ecosystems. Rather, biofertilizers’

performances may be specific as effectiveness is dependent upon factors like plant

type, soil type, and many other factors.
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Chapter 3

Role of Plant Growth-Promoting

Rhizobacteria for Commercially Grown

Medicinal Plants

B. Karthikeyan, U. Sakthivel, and J. Sriman Narayanan

3.1 Introduction

Over two millennia ago, the father of medicine, Hippocrates, mentioned about

400 medicinal plants and advocated, ‘Let food be your medicine and let medicine

be your food’. Medicinal plants constitute a segment of the flora which provides

raw materials for the use of industries producing pharmaceuticals, cosmetics and

fragrance flavour imparting biochemicals. Indian systems of medicine (ISM) use

around 2,500 plant species belonging to more than 1,000 genera. About 800 species

are used by industry of which approximately 25 % are cultivated. It is estimated that

25,000 effective phyto-based formulations are available under indigenous system

of medicine, and over 7,800 manufacturing units are producing plant-derived drugs

in India, as estimated by the Eximbank (Jose and Singh 2001). International market

of medicinal plant-related trade is to this time US$60 billion per year, with a growth

rate of 7 % annually. India exports different medicinal plants valuing at Rs. 1,200

million per annum.

The world population is likely to touch the 7.5 billion mark at the current growth

rate by the year 2020, the increase is excepted mostly in the developing (or)

underdeveloped countries where there is corresponding increase in the disease

possibilities. One billion people, mostly in developing countries, rely on, or choose

to use, medicinal plants to cover all or part of their health care needs (IUCN 1993;

WHO 2002). With the progress in chemical techniques, crude drugs came to be

replaced by pure chemical drugs, and the developed countries witnessed a decline

in popularity of medicinal plants therapy (Malik et al. 2011).
The world scenario on use of herbal plants is rapidly changing, and several

international pharmaceutical companies have now concentrated their research in
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developing medicinal plants and strengthening the market production of novel

drugs, nutraceuticals, nutrient and herbal dietary supplement, new biochemical

flavonoid compounds, antioxidants, glycosides, etc.

In India, Tamil Nadu state is under strategic geographical location and possesses

an invaluable treasure of medicinal plants holding a major share in cultivation and

export of more than 50 medicinal plant species. Tamil Nadu state is a potential

supplier of herbal raw material, phytochemicals, herbal medicines, essential oils,

floral concentrate, plant-based natural insecticides, etc. The commercially

cultivated medicinal plants include Catharanthus roseus (Periwinkle), Coleus
forskohlii (Coleus), Aloe vera (Aloe), Ocimum sanctum (Ocimum) and Withania
somnifera (Ashwagandha) (Karthikeyan et al. 2008b).

An intensive farming practice that warrants high yield and quality requires

extensive use of chemical fertilisers, which are costly and create environmental

problem. Moreover, the use of large quantities of chemical fertilisers not only

results in high costs but also affects soil health and the productivity. In the present

scenario there has been a resurgence of interest in environmental-friendly, sustain-

able, and organic agricultural practices use of plant growth-promoting rhizobacteria

(biofertiliser) containing beneficial microorganisms are known to improve plant

growth the supply of plant nutrients and releasing growth regulators and pathogen

inhibitor compounds (Esitken et al. 2005).
Among different groups of plant growth-promoting rhizobacteria, nitrogen-

fixing and phosphorous-solubilising/phosphate-mobilising organisms may be con-

sidered to be important since they improve plant nutrition by increasing N and P

uptake by plants, and they play a significant role as plant growth-promoting

rhizobacteria (PGPR) in the biofertiliser of crops (Karlidag et al. 2007; Karthikeyan

et al. 2010).
The occurrence of PGPR (Azospirillum, Azotobacter, Bacillus and Pseudomo-

nas) in the rhizosphere of medicinal plants such as Catharanthus roseus, Coleus
forskohlii, Aloe vera and Ocimum sanctum has been documented earlier

(Karthikeyan et al. 2008b). Hence, this chapter was focused on the role of PGPR

in commercially grown medicinal plants.

3.2 Important Commercially Grown Medicinal Plants

Some of the important medicinal plants have been discussed.

3.2.1 Catharanthus roseus (Periwinkle)

Catharanthus roseus (L.) G.Don. Synonym is a tropical perennial plant, native to

Madagascar, belonging to Apocynaceae family, where it has spread to India from

Madagascar. It has got tremendous export potential and can earn foreign exchange
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to the tune of several million dollars. The plant has a wide range of terpenoid indole

alkaloids (TIAs), which are valued for their wide spectrum of pharmaceutical

effects such as anticancer therapy (vinblastine and vincristine), hypertension,

acute leukaemia and Hodgkin’s diseases (ajmalicine, serpentine). The plant

contains more than 100 alkaloids distributed in all parts of the plant but in different

proportions. The plant has three varieties based on flower colour. The varieties are

‘rosea’ (pink flower), ‘alba’ (white flower) and ‘ocellata’ (white flower with pink

ring).

The occurrence of diazotrophic microorganism populations of Catharanthus
roseus was reported by Karthikeyan et al. (2008b). Among the diazotrophic

microorganisms, Azotobacter population was recorded the highest count (12.00,

7.66 � 104 cfu g�1) in both rhizosphere and non-rhizosphere, followed by

Azospirillum (8.00, 1.50 � 104 cfu g�1) and Pseudomonas (5.22,

3.00 � 104 cfu g�1).

3.2.2 Role of PGPR in Root Exudates of C. roseus

Root exudates are organic substances elaborated through plant roots into the

rhizosphere environment. It has got profound influence on the rhizosphere

microorganisms. C. roseus rosea variety root exudates were collected and

fractioned both qualitatively and quantitatively for their relative chemotactic activ-

ity of PGPB strains. The chemotactic response of PGPB strains was in the order of

Azospirillum lipoferum, Pseudomonas fluorescens, Azotobacter chroococcum and

Bacillus megaterium (Karthikeyan 2007).

3.2.3 Collection and Fractionation of the Root Exudates of
C. roseus Varieties

The root exudates of the two varieties of C. roseus, viz. ‘rosea’ and ‘alba’, were

collected and fractionated both qualitatively and quantitatively. The estimated

quantity of the different fractions was given in Table 3.1.

Crude root exudates of rosea variety (424.8 μg plant�1) have a cationic fraction

of 170.4 μg plant�1, an anionic fraction of 120.1 μg plant�1 and a neutral fraction of

90.2 μg plant�1, while the alba variety fractionation of crude root exudates

(370.4 μg plant�1) has a cationic fraction of 135.2 μg plant�1, an anionic fractionof

110.0 μg plant�1 and a neutral fraction of 75.5 μg plant�1. The cationic fraction

included different amino acids, anionic fraction included different organic acids

and neutral fraction included different sugars. The quantity of cationic fraction was

higher than that of anionic and neutral fractions, while the anionic fraction was
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higher than neutral fraction in the root exudate of both rosea and alba varieties

(Table 3.2).

Five different amino acids, viz. aspartic acid, glutamic acid, glycine, serine

and proline, were detected in the cationic fractions. In the root exudates of

C. roseus, rosea variety, the relative occurrence of amino acids was in the order

of glutamic acid (75.8 μg plant�1) > aspartic acid (43.6 μg plant�1) > glycine

(25.5 μg plant�1) > serine (15.5 μg plant�1) > and proline (10 μg plant�1).

The relative occurrence of different amino acids in the root exudates of alba

variety was in the order of glutamic acid (64.5 μg plant�1) > aspartic

(35.2 μg plant�1) > glycine (15.5 μg plant�1) > serine (12.0 μg plant�1) > proline

(7.5 μg plant�1). Five organic acids, viz.malic acid, oxalic acid, succinic acid, citric

acid and glutaric acid, were detected in the anionic fraction of both rosea and alba

varieties of C. roseus. In C. roseus—rosea variety—the quantity of different

organic acids present was in the order of malic acid (67.5 μg plant�1) > oxalic

acid (21.5 μg plant�1) > succinic acid (15.5 μg plant�1) > citric acid

(10.5 μg plant�1) and glutaric acid (5.0 μg plant�1), while in the alba variety, the

organic acid quantity was in the order of malic acid (64.1 μg plant�1) > oxalic acid

(20.5 μg plant�1) > succinic acid (13.5 μg plant�1) > citric acid (8.5 μg plant�1) >
glutaric acid (3.5 μg plant�1) (Table 3.2).

Five different sugars, viz. fructose, glucose, maltose, ribose and arabinose, were

detected in neutral fraction of the root exudates of rosea and alba varieties of

C. roseus. In C. roseus—rosea variety—the quantity of different sugars present

was in the order of fructose (32.2 μg plant�1) > glucose (25.5 μg plant�1) > maltose

(15.0 μg plant�1) > ribose (10.0 μg plant�1) and arabinose (7.5 μg plant�1).

Table 3.2 Qualitative and quantitative analysis of different fractions of the root exudates of

Catharanthus roseus varieties

S.

No.

Cationic fraction Anionic fraction Neutral fraction

Amino acids

Quantity in

μg plant�1

Organic acids

Quantity in

μg plant�1

Sugars

Quantity in

μg plant�1

Rosea Alba Rosea Alba Rosea Alba

1. Aspartic acid 43.6 35.9 Malic acid 67.5 64.1 Fructose 32.2 30.00

2. Glutamic acid 75.8 64.5 Oxalic acid 21.5 20.5 Glucose 25.5 21.00

3. Glycine 25.5 15.5 Succinic acid 15.5 13.5 Maltose 15.0 12.5

4. Serine 15.5 12.0 Citric acid 10.5 8.5 Ribose 10.0 7.0

5. Proline 10.0 7.5 Glutaric acid 5.0 3.5 Arabinose 7.5 5.0

Table 3.1 Fractionations of the root exudates of Catharanthus roseus varieties

S. No. Components of root exudates

Rosea variety Alba variety

Quantity (μg plant�1) Quantity (μg plant�1)

1. Crude root exudates 424.8 370.4

2. Cationic fraction 170.4 135.2

3. Anionic fraction 120.1 110.0

4. Neutral Fraction 90.2 75.5
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In the neutral fraction of alba variety, the quantity of different sugars present was

in the order of fructose (30.0 μg plant�1) > glucose (21.0 μg plant�1) > maltose

(12.5 μg plant�1) > ribose (7.0 μg plant�1) and arabinose (5.0 μg plant�1) in the

root exudates (Table 3.2).

3.2.4 Relative Chemotactic Response of PGPB Strains Towards
Different Root Exudates Fractions of C. roseus Varieties

The root exudates collected from the two varieties of C. roseus, viz. rosea and alba,
were used as such (crude) as well as their fractionated compounds either singly or in

combinations to study their chemotactic activity and to determine the relative

chemotactic response of four selected efficient PGPB strains, viz. A. lipoferum
CAZS-4, A. chroococcum CAZB-1, B. megaterium CPB-18 and P. fluorescens
CPF-14 (Table 3.3).

All the four strains recorded higher RCR values to the root exudates of the

variety rosea than that of alba. Further the RCR values obtained for the recombined

fraction are the highest followed by crude root exudate as such and combination of

fraction of any two and individual fractions.

Among the three fractions tested individually, all the four strains showed higher

RCR values to anionic fraction followed by neutral and cationic fractions.

The strains exerted better response to the treatment combinations of anionic +

cationic, followed by anionic + neutral and cationic + neutral, whereas the

recombined fractions of anionic + neutral + cationic exerted the highest chemo-

tactic effect, and the strains tested showed higher RCR values than that of the RCR

values recorded for the other treatments.

RCR value of A. lipoferum CAZS-4 was highest at 4.2 � 0.18 towards recombined

fractions (anionic + cationic + neutral) followed by 3.8 � 0.24 towards crude root

exudates, 3.5 � 0.44 towards anionic + cationic, 3.2 � 0.42 towards anionic +

neutral, 3.1 � 0.05 towards cationic + neutral, 3.0 � 0.24 towards anionic,

2.0 � 0.28 towards neutral and 1.5 � 0.16 towards cationic fraction of the root

exudates of rosea variety of C. roseus. The distilled water control recorded no

chemotactic activity.

The RCR value of A. chroococcum CAZB-1 was highest at 3.0 � 0.98 towards

recombined fractions followed by 2.5 � 0.12 towards crude root exudates, 2.2

towards anionic + cationic, 2.0 � 0.48 towards anionic + neutral, 1.8 � 0.67

towards cationic + neutral, 1.6 � 0.88 towards anionic, 1.5 � 0.44 towards neu-

tral and 1.0 � 0.42 towards cationic fraction of the root exudates of rosea variety of

C. roseus.
For the root exudates of rosea variety of C. roseus, the RCR values of

B. megaterium CPB-18 were highest at 1.1 � 0.90 towards recombined fractions

followed by 1.0 � 0.18 towards crude root exudates, 0.9 � 0.44 towards anionic �
cationic, 0.8 � 0.74 towards anionic + neutral, 0.7 � 0.50 towards cationic + neutral,
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0.5 � 0.26 towards anionic, 0.4 � 0.37 towards neutral and 0.3 � 0.68 towards

cationic fraction.

The RCR value of P. fluorescens CPF-14 was highest at 3.6 � 0.44 towards

recombined fractions followed by 3.2 � 0.66 towards anionic + cationic,

2.8 � 0.66 towards anionic + neutral, 2.4 � 0.88 towards cationic + neutral,

2.5 � 0.24 towards anionic, 1.7 � 0.16 towards neutral and 1.2 � 0.16 towards

cationic fractions of the root exudates of rosea variety of C. roseus.
Chemotactic response to all the four strains although higher towards recombined

fractions than the other fractions and the RCR values obtained were in the order of

4.2 � 0.18 for A. lipoferum CAZS-4, 3.6 � 0.44 for P. fluorescens CPF-14, 3.0

� 0.98 for A. chroococcum CAZB-1 and 1.1 � 0.90 for B. megaterium CPB-18.

For the root exudates of alba variety of C. roseus, the RCR value of A. lipoferum
CAZS-4 was highest at 3.5 � 0.88 towards recombined fractions followed by

3.0 � 0.22 towards crude root exudates, 2.7 � 0.78 towards anionic + cationic,

2.5 � 0.46 towards anionic + neutral, 1.7 � 0.14 towards neutral, 2.2 � 0.17

towards cationic + neutral, 1.3 � 0.16 towards anionic and 1.2 � 0.44 towards

cationic.

For the root exudates of alba variety of C. roseus, the RCR value of

A. chroococcum CAZB-1 was highest at 2.8 � 0.86 towards recombined fraction

followed by 2.1 � 0.49 towards crude root exudates, 1.9 � 0.78 towards anionic +

cationic, 1.8 � 0.22 towards anionic + neutral, 1.7 � 0.62 towards cationic +

neutral, 1.6 � 0.26 towards anionic, 1.2 � 0.14 towards neutral and 0.9 � 0.10

towards cationic.

For the root exudates of alba variety of C. roseus, the RCR value of

B. megaterium CPB-18 was highest at 1.0 � 0.66 towards recombined fraction

followed by 0.9 � 0.66 towards crude root exudates, 0.8 � 0.42 towards anionic +

cationic, 0.7 � 0.72 towards anionic + neutral, 0.6 � 0.10 towards cationic +

neutral, 0.4 � 0.84 towards anionic, 0.2 � 0.12 towards neutral and 0.2 � 0.22

towards cationic.

For the root exudates of alba variety of C. roseus, the RCR value of

P. fluorescens CPF-14 was highest at 3.2 � 0.10 towards recombined fractions,

followed by 2.8 � 0.94 towards crude root exudates, 2.5 � 0.62 towards anionic +

cationic, 2.3 � 0.14 towards anionic + neutral, 2.0 � 0.24 towards cationic +

neutral, 1.8 � 0.78 towards anionic, 1.3 � 0.9 towards neutral and 1.0 � 0.77

towards cationic. In the recombined fraction of the alba variety, the RCR values

obtained were in the following order: that of A. lipoferum CAZS-4 was 3.5 � 0.88,

that of P. fluorescens CPF-14 was 3.2 � 0.10, that of A. chroococcum CAZB-1 was

2.8 � 0.86 and that of B. megaterium CPB-18 was 1.0 � 0.66.

The ability of Pseudomonas sp. and Azospirillum sp. to detect low

concentrations of components of root exudates in soils (Lopezdevictoria and Lovell

1993). Reinhold et al. (1985) reported that the optimum concentrations for amino

acids, organic acids and sugars were 40 mM for the highest chemotactic attraction

of A. brasilense and A. lipoferum. Root exudates modulate the interaction between

plants and PGPR; reported by Deweert et al. (2002) under certain conditions, many

compounds present in the root exudates stimulate a positive chemotactic response
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in bacteria (Somers et al. 2004). The bacterial diversity was found to increase with

the stages of plant growth gradually from seedling up to maturation stage and then

eventually followed a decline with only transient changes (Kumar et al. 2011).

3.2.5 Role of Plant Growth-Promoting Bacteria in
Improvement of Alkaloid Content in C. roseus

Plant growth-promoting rhizobacteria (PGPR) represent a wide variety of soil

bacteria which, when grown in association with a host plant, result in stimulation

of growth of their host. A study was conducted on C. roseus for the effect of seed
treatments with native diazotrophs on its seedling growth and antioxidant enzyme

activity. The seed treatment with native isolates of Azospirillum and Azotobacter
increased the germination percentage, root length, shoot length and vigour index of

C. roseus. The maximum germination percentage (70 %) was recorded in Azoto-
bacter treatment followed by Azospirillum (66 %). The native isolate Azotobacter
and Azospirillum significantly increased the germination rate in C. roseus which
was 70 % as against 35 % recorded by untreated control. The treatments with

diazotrophs resulted in significantly higher dry matter than control (Karthikeyan

et al. 2007). There was a significant increase in superoxide dismutase (SOD),

peroxidase (POX) and catalase (CAT) antioxidant enzymes under Azotobacter
and Azospirillum treatments. SOD activity directly modulates the amount of

ROS. It catalyses the dismutation of superoxide anion radical (O2) with great

efficiency resulting in the production of H2O2 and O2. The changes in SOD activity

under Azotobacter and Azospirillum treatments can be also a consequence of an

altered synthesis and accumulation of less active enzymes and/or of a higher

turnover of SOD. Karthikeyan et al. (2007) also reported that the Pseudomonas
fluorescens-treated plants increases the plant height, root length and ajmalicine

content of C. roseus, which is due to the production of growth hormones by PGPR

(Jaleel et al. 2007).

3.2.6 Effect of PGPB Consortium Inoculation on the
Ajmalicine Content in the Roots of C. roseus Varieties by
TLC

The results on the root ajmalicine (alkaloid) content of both rosea and alba varieties

of C. roseus were presented in Table 3.4. The inoculation with plant growth-

promoting bacteria significantly increased the alkaloid content of C. roseus
varieties. The ajmalicine content of roots of C. roseus ranged from 0.500 to

1.120 mg g�1 of root in both the varieties with various treatments as measured by

thin layer chromatography (TLC).
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The consortium-inoculated treatment recorded the maximum alkaloid content of

1.120 mg g�1 in ‘rosea’ variety followed by the single inoculant treatment of A.
lipoferum CAZS-4, 1.000 mg g�1; P. fluorescens CPF-14, 0.950 mg g�1; A.
chroococcum CAZB-1, 0.900 mg g�1; and B. megaterium CPB-18, 0.750 mg g�1.

In the alba variety also, consortium inoculant recorded maximum ajmalicine

content of 0.925 mg g�1 on 180 DAS followed by the single inoculant treatments of

T1, T4, T2 and T3, while the uninoculated control recorded least ajmalicine content

in both the varieties.

Karthikeyan et al. (2010) reported that in C. roseus plants treated with triple

combined application of PGPR (Azotobacter + Pseudomonas + Bacillus), there
was a significant increase in plant height (41.79 %), root length (60.02 %), root

girth (109.09 %) and ajmalicine alkaloid content (179.41 %) compared with

control. Likewise nutrient content (N, P, K) was also increased in triple combina-

tion followed by double combination of PGPR.

3.3 Other Medicinal Plants

Many other medicinal plants are used extensively in alternative medicinal systems

and are indigenous in origin. Two of them have been highlighted herein.

3.3.1 Coleus forskohlii

Coleus forskohlii is an important indigenous medicinal plant in India. It has been

used in traditional ayurvedic medicine for curing various disorders, and this is the

only source of diterpenoid forskolin. Forskolin is used for the treatment of eczema,

asthma psoriasis, cardiovascular disorders and hypertension, where decreased

Table 3.4 Effect of PGPB consortium inoculation on the ajmalicine content of Catharanthus
rosea varieties

Treatments

Ajmalicine content of Rosea

varietya
Ajmalicine content of Alba

varietya

90

DAS

120

DAS

150

DAS

180

DAS

90

DAS

120

DAS

150

DAS

180

DAS

T1—Azospirillum 0.610 0.712 0.800 1.000 0.600 0.695 0.758 0.875

T2—Azotobacter 0.535 0.615 0.720 0.900 0.510 0.600 0.720 0.790

T3—Bacillus 0.500 0.585 0.625 0.750 0.450 0.510 0.600 0.700

T4—Pseudomonas 0.585 0.695 0.770 0.950 0.500 0.610 0.720 0.800

T5—consortium

(T1 + T2 + T3 + T4)

0.650 0.785 0.825 1.120 0.620 0.750 0.825 0.925

T6—uninoculated control 0.500 0.625 0.700 0.800 0.400 0.550 0.625 0.700

SEd 0.004 0.005 0.017 0.022 0.005 0.017 0.017 0.020

CD (P ¼ 0.05) 0.009 0.011 0.034 0.045 0.010 0.034 0.035 0.041
amg g�1 root dry weight
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intracellular cAMP level is believed to be a major factor in the development of the

disease process (Kavitha et al. 2010).

The occurrence of PGPR organisms in Coleus and Ashwagandha was reported

by Karthikeyan (2007). In Coleus and Ashwagandha plant Azotobacter population
recorded maximum (5.68 � 104, 2.49 � 106) followed by Azospirillum and Pseu-
domonas population. Priya (2010) reported the occurrence of plant growth-promoting

rhizobacteria in the rhizosphere soil of Coleus forskohlii. The highest occurrence of
PGPR in the rhizosphere soil of Coleus is Azospirillum, Pseudomonas, Azotobacter
and Bacillus.

Priya (2010) also reported that the combined inoculation of PGPR significantly

increased the forskolin alkaloid content Coleus forskohlii. The combined inoculant

treatment recorded increased in forskolin content of 0.93 % while compared to

uninoculated control (0.23 %) and it is reported the per cent of disease index (PDI)

occurrence of root rot disease in Coleus forskohlii. The combined PGPR

(Azospirillum + Azotobacter + Pseudomonas + Bacillus) recorded the lowest dis-

ease index in Coleus forskohlii.

3.3.2 Withania somnifera (Ashwagandha)

Ashwagandha (Withania somnifera) is an important medicinal plant. Withanin and

Somniferine are important in Ayurvedic and Unani preparations. The dried roots of

the plant are used in the treatment of nervous and sexual disorders (Rajasekar and

Elango 2011).

The occurrences of PGPR in the rhizosphere soil of Withania somnifera were

reported by Karthikeyan et al. (2008a, b). Among the PGPR, Azotobacter recorded
maximum population (2.49 � 104 g of soil) followed by Azospirillum and Pseudo-
monas. He also reported the growth-promoting traits of strains. Rajasekar and

Elango (2011) also reported that the PGPR consortium significantly increased the

plant height, root length and alkaloid content of W. somnifera.

3.4 Conclusions

The considerable efforts towards understanding the ecology and management of

PGPR have been directed, yet their development as inoculants remains a consider-

able challenge. Research in last decade has opened up new horizons for commer-

cially grown medicinal plants. Exploration and identification of traits involved in

the ability of certain bacteria to establish themselves into the rhizosphere at levels

sufficient to exert effects on plant growth effectively complete with the indigenous

microflora co-operatively interact with other beneficial members of rhizospheric

biota and understand the mechanisms that occur between plants and bacteria are

also required.
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Medicinal plants have become potential research areas in the developing

countries. Further research needs to be carried out on the role of PGPR, while

production of alkaloid time in the rhizosphere soil and mechanisms were thor-

oughly studied under natural environments.
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Chapter 4

Rhizosphere Bacteria from Coastal Sand

Dunes and Their Applications in Agriculture

Aureen Godinho and Saroj Bhosle

4.1 Introduction

Coastal sand dunes are a nutrient-limited ecosystem. Their types and vegetation

vary from place to place.

4.1.1 Coastal Sand Dune Ecosystem

The word sand dune reflects the images of vast amount of shifting sand barren to

plants and hostile to human habitation. Sand dunes are generally of two types. The

first type is the extremely dry interior deserts such as Sahara in Africa or Rajasthan

in India, and the other type is known as the coastal sand dunes which occur along

the coasts of the Atlantic, Pacific, North America, and Australia. In Asia the coastal

dunes occur in Japan, India, and several other countries (Desai and Untawale 2002;

Boorman 1977; Carter 1998).

4.1.1.1 Sand Dune Vegetation

Vegetation plays a dominant role in determining the size, shape, and stability of

fore dunes (Fig. 4.1). The aerial parts of the vegetation obstruct the wind and absorb

wind energy. Wind velocity near vegetation is thus reduced below that needed for

sand transport and hence the sand deposit around the vegetation. A characteristic of

dune vegetation, particularly the grasses growing under these conditions, is its

ability to produce upright stems and new roots in response to sand covering.
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The development of vegetation cover on newly formed dunes, if undisturbed,

creates conditions which suit the colonization and growth of a wider range of

plant species. Dead plants and litter from these plants add humus to the sand. The

accumulation of humus results in improved moisture- and nutrient-holding capacity

of developing dune soils. Thus, with lower surface temperature and increased

moisture and nutrient content, the sand is able to support a great variety of plants

(Desai and Untawale 2002).

4.2 Rhizosphere as a Site of Plant: Microbe Interactions

The rhizosphere is the portion of the soil under the direct influence of the roots of

higher plants. It is considered the most intense ecological habitat in soil in which

microorganisms are in direct contact with plant roots. The root system of all higher

plants is associated with a distinct, diverse community of metabolically active soil

microbiota that carries out biochemical transformations. Rhizosphere

microorganisms may have specific associations with plants through which they

exert their influence on plant growth. The production of biologically active

metabolites, particularly the plant growth regulators by rhizosphere microbiota, is

considered one of the most important mechanisms of action through which the

rhizosphere microbiota affect plant growth directly after being taken up by the plant

or indirectly by modifying the rhizosphere environment. The plant rhizosphere is a

dynamic environment in which many factors may affect the structure and species

composition of the microbial communities that colonize the roots. Microbial

communities associated with the rhizosphere also vary depending on the plant

species, soil type, and cultural practices such as crop rotation or tillage

(Frankenberger and Arshad 1995; Davison 1988).

Bacteria can form close associations with roots within the root tissue itself, on

the root surface (rhizoplane), and within the soil immediately adjacent to the root

(rhizosphere). Inhabitants of these sites rely heavily for their energy supply on

organic substances provided by the roots, and their growth is therefore related

intimately to the metabolic activity of the plants involved (Gaskins et al. 1985).

While many bacteria found in soil are bound to the surface of soil particles and are

found in soil aggregates, a number of soil bacteria interact specifically with the

Fig. 4.1 Beach grasses and

shrubs growing on coastal

sand dunes
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roots of plants. In fact, the concentration of bacteria(per gram of soil) that is found

around the roots of the plants (i.e., in the rhizosphere) is generally much greater

than the bacterial density, or concentration, that is found in the zone around the

roots and can be used to support bacterial growth and metabolism (Glick 1995;

Alexander 1977). The rhizobacteria respond to plant signals, exchange nutrients

with plant cells, suffer damage due to plant defense responses, and colonize or even

evade root tissues, creating pathologies or symbiosis as compared to the bacteria

present in bulk soil. Mucigel provides the immediate environment for rhizobacteria;

it consists of plant mucilage, bacterial exopolymers, and soil particles. Plant roots

sheathed with mucigel have higher relative water content than do bare roots, and

thus mucigel protects the root and associated microflora from dehydration (Miller

and Wood 1996).

The constituents of root exudates play an important role in selecting and

enriching the types of bacteria. Depending on the ability of the bacteria to utilize

these as sources of energy, the bacterial community develops in the rhizosphere.

Plant root exudate components serve as a source of carbon substrate for microbial

growth; in addition they also contain chemical molecules that promote chemotaxis

of microbes to the rhizosphere. Root exudates are supplemented in maintaining a

steady concentration of flavonoids and mineral nutrients in the rhizosphere by the

compounds released from the decomposition of organic matter such as dead roots

and fallen leaves (Dakora and Phillips 2002). Thus, depending on the nature and

concentrations of organic constituents of exudates, and the corresponding ability of

the bacteria to utilize these as sources of energy, the bacterial community develops

in the rhizosphere. Bacteria living in the soil are called free-living as they do not

depend on root exudates for their survival, while rhizospheric bacterial

communities have efficient systems for uptake and catabolism of organic

compounds present in root exudates. Several bacteria have the ability to attach to

the root surfaces (rhizoplane) allowing these to derive maximum benefit from root

exudates. Some of these are more specialized, as they possess the ability to

penetrate inside the root tissues (endophytes) and have direct access to organic

compounds present in the apoplast. It is also known that some of the Plant growth-

promoting rhizobacteria (PGPR) strains can colonize inside plant tissues, and

bacterial strains that naturally exist in healthy plant tissues are referred to as

“endophytes.” Hallmann et al. (1997) defined endophytic bacteria as “bacteria

that can be isolated from surface disinfested plant tissue or extracted from within

the plant, and that do not visibly harm the plant.” Most of the endophytes reported

previously were isolated by maceration of surface-sterile plant tissues. Various

endophytes have been isolated from agronomic crops and prairie plants (Halmann

1997; Weller 1988), and many of them have been utilized as microbial inoculants to

control plant pathogens and promote plant growth. By occupying this privileged

endophytic location, bacteria do not have to face competition from their

counterparts as encountered in the rhizosphere or in soil. Such bacteria which

influence the plant growth either directly or indirectly are termed as plant growth-

promoting bacteria (PGPB). They inhabit majority of healthy and symptomless

plants, in various tissues, seeds, roots, stems, and leaves (Johri 2006). Plants benefit
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extensively by harboring these endophytic microbes; they promote plant growth

(Compant et al. 2005) and confer enhanced resistance to various pathogens by

producing antibiotics. Endophytes also produce unusual secondary metabolites of

plant importance. It has been suggested that the presence of a mutualistic endophyte

acts as a “biological trigger” to activate the stress response system more rapidly and

strongly than nonmutualistic plants (Bandara et al. 2006).

4.3 Bacteria Associated with Sand Dune Vegetation

Little is known about the bacterial communities associated with the plants

inhabiting sand dune ecosystems. Accelerated coastal erosion threatens private

and public property in many areas of the world. Lost sand is replaced with material

of compatible physical properties which is shaped to the desired beach profile and

planted with pioneer species, such as Ipomoea and Spinifex, to enhance beach

stability and begin the dune-building process. The major factors limiting establish-

ment and early, vigorous growth of dune plants in the face of environmental

extremes are infertility and the poor moisture-holding capacity of coarse replenish-

ment materials. Rhizosphere microorganisms may allow beach grasses to overcome

these environmental extremes (Will and Sylvia 1990). Plants are known to alter the

composition of microbial communities associated with their roots (Grayston et al.

1996; Marschner et al. 2001). Plant roots in the soil represent a four-dimensional

region, in space and time, of profuse activity relative to the bulk soil, revolving

around pH, nutrient, redox potential, and exudate gradients changing as distance

from the root increases (Marschner 1995). This region of gradients in chemical and

physical factors strongly influenced by the presence of plant roots and characterized

by high rates of microbial population and activity is referred to as the rhizosphere.

In 1904, Hiltner first defined the rhizosphere as “. . . that zone of soil in which the
microflora are influenced by plant roots” (Kang and Mills 2004). This rhizosphere

effect is primarily due to the influx of mineral nutrients to the plant roots through

mass flow and diffusion, alongside the efflux and accumulation of plant root

exudates. Microbial communities in the rhizosphere are primarily plant driven,

responding with respect to density, composition, and activity to the abundance and

diversity of plant-derived exudates, eventually leading to plant species-specific

microflora. A substantial portion of the root exudates consist of carbon and energy

sources readily available for microbial growth; by now it is clear that plant roots

excrete amino acids, proteins, sugars, organic acids, vitamins, and other bacterium-

beneficial substances affecting growth, development, and physiology of a microbial

population. Low molecular weight plant-derived exudates, mainly amino acids,

organic acids, and sugars commonly found in most plants, are rapidly utilized by

microorganisms. In addition, high molecular weight root mucilage, consisting of

approximately 95 % sugars and 5 % amino acids in the form of heteropolysac-

charides and glycoproteins, also serve as a source of energy for rhizosphere bacteria

(Somers et al. 2004). The exact composition of the exudates is determined by many
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factors, including species and nutritional status of the plant, soil structure, and

micronutrient status (Marschner 1995). Depending on the composition of the

exudates secreted by a given plants’ roots, that plant may be able to alter the

physical and chemical properties of the soil, inhibit the propagation or growth of

another plant species, withstand underground herbivory, enhance the possibilities

and success of symbiotic relationships, and dictate, to some extent, the soil micro-

bial community in the rhizosphere. In fact, most rhizosphere bacteria and fungi are

highly dependent on associations with plants that are clearly regulated by root

exudates (Bais et al. 2004), and in the rhizosphere numbers of microorganisms can

reach 1010–1012 organisms g�1 soil (Forster 1979). Plant–microbe symbioses have

been exploited in programs of sand dune restoration. Plant-associated bacteria may

increase the ability of plants to utilize nutrients from the soil by increasing root

development, nitrate uptake, or solubilizing phosphorus and to control soil-borne

pathogens (Smith and Read 1997; Whipps 2001).

In order to understand the effects of plant–bacteria interactions, it is essential to

study the bacterial diversity associated with plants, and there have actually been a

number of studies characterizing the structures and functions of rhizosphere and

root bacterial communities (Hallmann et al. 1997; Mahaffee and Kloepper 1997;

Maloney et al. 1997; Germida et al. 1998). Plants are known to alter the composi-

tion of microbial communities associated with their roots (Grayston et al. 1996;

Marschner et al. 2001). Plant communities in sand dunes are controlled by the

interaction between biotic and physicochemical components of the sand matrix

(Read 1989). Interactions with microbes appear crucial in obtaining inorganic

nutrients or growth-influencing substances. In addition, human activities may also

be an important factor, as they will certainly affect the vegetation as well as

plant–microbe interactions.

Dalton et al. (2004) suggested that the nitrogen-fixing bacteria isolated from the

rhizosphere and root of Ammophila arenaria may contribute to the prolific success

of these plants in nutrient-poor sand. Despite the important role played by bacterial

diversity in sand dune plant communities, little is known on the distribution and

abundance of root or rhizosphere associated bacteria. Park et al. (2005) first

reported on the diversity of culturable bacteria associated with the two major

sand dune plant species, Calystegia soldanella (beach morning glory) and Elymus
mollis (wild rye), which are found as the dominant plant species along the coastal

sand dune areas in Tae-An, Chungnam Province. While in another study carried out

by Lee et al. (2006), bacterial diversity in the rhizosphere of beach morning glory

(Calystegia soldanella) and wild rye (Elymus mollis), two of the major plant species

inhabiting the coastal sand dune in Tae-An, Korea, was studied by the analysis of

community 16S rRNA gene clones.

In our studies the seasonal variation of rhizosphere and endophytic bacteria

associated with Ipomoea pes-caprae and Spinifex littoreus was studied. Based on

the cultural, physiological, and biochemical characteristics, it was observed that

among the neutrophiles, majority of the isolates belonged to Bacillus genus, while
among the alkaliphiles, the majority of the isolates were gram-positive irregular

rods belonging to genera such as Brochothrix, Cellulomonas, Microbacterium, and
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Brevibacterium. Zinniel et al. (2002) identified Cellulomonas, Clavibacter,
Curtobacterium, and Microbacterium as the most promising colonizing strains

with four agronomic crop species. Karp and Nelson (2004) reported that the sand

and soil root zones were dominated largely by gram-positive species, e.g.,

Arthrobacter, Bacillus, and Microbacterium species, as also observed during the

present study. Soil rhizosphere communities consisted almost entirely of

Actinobacterium, Arthrobacter, and Bacillus isolates, whereas sand root zones

contained clones of a few gram-negative genera such as Aminobacter,
Chelatobacter, Ensifer, and Pseudomonas. Smit et al. (2001) studied the bacterial

diversity and dynamics in Lovinkhoeve soil samples the most dominant bacterial

genera detected by plating appeared to be Micrococcus and Arthrobacter. These
genera are often found in various soils, such as those of wheat fields, deciduous

woodlands, grasslands, and sand dunes. Tiago et al. (2004) investigated the bacte-

rial diversity in a nonsaline alkaline environment and reported that the majority of

the isolates were related to Microbacteriaceae family members, while another set

of isolates represented populations related to different species in the lineage of the

Micrococcaceae, namely, Micrococcus luteus, Citrococcus muralis, and Rothia
dentocariosa, and others were related to various species of the genera Kocuria
and Nesterenkonia. Overall, it was observed that endophytic bacteria counts were

higher than rhizosphere bacterial counts among the different bacterial groups.

Interestingly, the total viable counts in unvegetated areas of sand dunes were

lower than the vegetated areas as seen from the analysis of the samples collected

from unvegetated area.

4.4 Plant Growth-Promoting Rhizobacteria

PGPR are naturally occurring, free-living soil bacteria that are capable of

colonizing roots and enhancing plant growth when added to seeds or roots

(Kloepper and Schroth 1978; Frankenberger and Arshad 1995). There are several

ways in which plant growth-promoting bacteria can directly facilitate the prolifera-

tion of their host plants. They may fix atmospheric nitrogen and supply it to plants;

solubilize minerals such as phosphorus; produce siderophores, which can solubilize

and sequester iron and provide it to plants; and synthesize phytohormones, includ-

ing auxins, cytokinins, and gibberellins, which can enhance various stages of plant

growth. Indirect promotion of plant growth occurs when these bacteria decrease or

prevent some of the deleterious effects of a pathogenic organism by any one or

more of several different mechanisms including improving growth-restricting

conditions either via production of antagonistic substances or by inducing resis-

tance against plant pathogens (Kloepper 1993; Tilak et al. 2005). For example,

production of antibiotics can interfere directly with growth and activity of deleteri-

ous soil microorganisms (Glick and Bashan 1997), whereas induction of resistance

in the plant increases the plants defense capacity (VanLoon et al. 1998). In addition,
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bacteria may reduce stresses resulting from the presence of toxic wastes by

sequestering heavy metals or degrading organic pollutants.

There are 20 different biocontrol PGPR strains commercially available in the

market at present. Biocontrol of plant pathogens is achieved through antibiotic

synthesis; secretion of iron-binding siderophores to obtain soluble iron from the soil

and provide it to a plant, thereby depriving fungal pathogens in the vicinity of

soluble iron; production of low molecular weight metabolites such as hydrogen

cyanide with antifungal activity; and production of enzymes including chitinase,

β-1,3-glucanase, protease, or lipase which can lyse some fungal cells, outcompeting

phytopathogens for nutrients and niches on the root surface (Penrose and Glick

2003). A particular bacterium may promote plant growth and development using

any one, or more, of these mechanisms. For example, following seed germination a

PGPR may lower the plants ethylene concentration thereby decreasing the ethylene

inhibition of seedling root length. Once the seedling has depleted the resources that

are contained within the seed, the same PGPR may help to provide the plant with

iron and phosphorus from the soil. The impact of the mechanisms by which the

bacteria provides a compound or nutrient such as fixed N, P, or Fe to the plant varies

considerably depending upon the soil composition. Thus PGPR often have little or

no measurable effect on plant growth when the plants are cultivated in nutrient-rich

soil and grown under optimal conditions.

Further root-associated bacteria capable of fixing nitrogen occur regularly in

diverse soils which vary widely in nitrogen content. Common genera capable of

fixing nitrogen include Azospirillum, Azotobacter, Bacillus, Clostridium, Derxia,
and Klebsiella. These are commonly designated “free-living” bacteria, since they

are able to exist in the soil and reduce nitrogen without entering into symbiotic

association with plants (Gaskins et al. 1985). Denitrification which transforms

reduced nitrogen compounds into gaseous nitrogen allows return of nitrogen to

the atmosphere from the soil. Alcaligenes, Bacillus, and Pseudomonas spp. are

common types of denitrifying bacteria. The removal of soil nitrogen by denitrifying

bacteria is normally considered detrimental to crop production, because in most

instances nitrogen is the element which most severely limits plant growth. How-

ever, these bacteria are useful since they prevent nitrogen compounds from

accumulating to toxic levels, particularly in poorly drained areas. Also, denitrifica-

tion activity beneath the root zone is beneficial, since it reduces the nitrate load in

groundwater. Denitrification tends to maintain a balance between soil and atmo-

spheric nitrogen (Gaskins et al. 1985). Also the mechanism most often invoked to

explain the various effects of plant growth-promoting bacteria on plants is the

production of phytohormones most notably auxin. Auxins are a class of PGPR

known to stimulate both rapid (e.g., increases in cell elongation) and long-term

(e.g., cell division and differentiation) responses in plants. Diverse soil

microorganisms including bacteria, filamentous fungi, and yeasts are capable of

producing physiologically active quantities of auxins and which have pronounced

effects on plant growth and development. L-Tryptophan (L-TRP) is considered as a

physiological precursor of auxin biosynthesis in both higher plants and
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microorganisms (Arshad and Frankenberger 1998). Since plants as well as plant

growth-promoting bacteria can synthesize indoleacetic acid (IAA), it is important

when assessing the consequences of treating a plant with a plant growth-promoting

bacterium to distinguish between the bacterial stimulation of plant auxin synthesis

on the one hand and auxin that is synthesized by the bacterium on the other. The

level of auxin produced by a bacterium in the rhizosphere determines its effect on

the host plant; high levels induce developmental abnormalities and stimulate

formation of lateral and adventitious roots, while low levels promote root elonga-

tion (Van Loon and Glick 2004).

A number of different bacteria considered to be PGPR include Azotobacter spp.,
Azospirillum spp., Pseudomonads, Acetobacter spp., Burkholderia spp., Bacillus,
Alcaligenes, Klebsiella, Enterobacter, Herbaspirillum, and Xanthomonas (Glick

1995). A number of bacterial species associated with the plant rhizosphere belong-

ing to genera Azospirillum, Alcaligenes, Arthrobacter, Acinetobacter, Bacillus,
Burkholderia, Enterobacter, Erwinia, Flavobacterium, Pseudomonas, Rhizobium,
and Serratia are able to exert a beneficial effect on plant growth (Tilak et al. 2005).

The PGPR play a significant role in supporting growth of plants. These bacteria

possess traits which help in either improving the availability of the nutrients or

inhibiting the pathogenic bacteria. The availability of nutrients is facilitated by

production of siderophores, exopolysaccharides (EPS), and polyhydroxyalkanoates

(PHAs).

4.5 Significant Plant Growth-Promoting Metabolites

Produced by Sand Dune Rhizobacteria

Many scientists have evaluated the efficiency of isolated PGPR. Some of their

significant mechanisms have been enlisted below.

4.5.1 ACC Deaminase

Ethylene, which is produced in almost all plants, mediates a range of plant

responses and developmental steps. Ethylene is involved in seed germination, tissue

differentiation, formation of root and shoot primordia, root elongation, lateral bud

development, flowering initiation, anthocyanin synthesis, flower opening and

senescence, fruit ripening and degreening, production of volatile organic

compounds responsible for aroma formation in fruits, storage product hydrolysis,

leaf and fruit abscission, and the response of plants to biotic and abiotic stresses

(Frankenberger and Arshad 1995). In some instances ethylene is stimulatory, while

in others it is inhibitory. The increased level of ethylene formed in response to

trauma inflicted by temperature extremes, water stress, ultraviolet light, chemicals,
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mechanical wounding, insect damage, and disease can be both the cause of some of

the symptoms of stress (e.g., onset of epinastic curvature and formation of aeren-

chyma) and the inducer of responses, which will enhance survival of the plant under

adverse conditions (e.g., cell wall strengthening, production of phytoalexins, and

synthesis of defensive proteins).

1-Aminocyclopropane-1-carboxylate (ACC), the cyclopropanoid amino acid, is

a precursor in the biosynthetic pathway of the plant hormone ethylene. Plant

growth-promoting soil bacteria have been found to contain ACC deaminase

(ACCD), a PLP-dependent enzyme that converts ACC to a ketobutyrate and

ammonium. Introduction of ACCD in higher plants by gene modification technol-

ogy reduced the production of ethylene and delayed ripening of fruits. Pseudomo-
nas putida UW4, a novel ACCD-containing bacterium, has been shown to promote

plant growth under different environmental stresses including flooding, drought,

and the presence of heavy metals and phytopathogens. The possibility of a close

mutualistic relationship between the plants and the soil bacteria has been suggested

and the role of ACCD in ensuring low levels of ethylene at critical stages of root

growth has been proposed by Hontzeas et al. 2004a, b). The enzyme ACC deami-

nase is important as this enzyme can cleave the plant ethylene precursor ACC and

thereby lowers the level of ethylene in a developing or stressed plant. A burst of

ethylene is required to break seed dormancy for many plants, but following

germination a sustained high level of ethylene would inhibit root elongation.

PGPR that contain the enzyme ACC deaminase when bound to the seed coat of a

developing seedling act as a mechanism for ensuring that the ethylene level does

not become elevated to the point where crucial root growth is impaired. By

facilitating the formation of longer roots, these bacteria may enhance the survival

of some seedlings especially during the first few days after the seeds are planted.

Thus, plant growth-promoting bacteria are supplied with a unique additional

source of nitrogen in the form of ACC that enables them to proliferate under

conditions in which other soil bacteria may not flourish, for instance, when nitrogen

availability is low and competition for nutrients is intense. As a result of lowering

the ACC level within the plant, either the endogenous level or the IAA-stimulated

level, the amount of ethylene in the plant is also reduced. Plant growth-promoting

bacteria that possess the enzyme ACC deaminase and are bound to seeds or roots of

seedlings can reduce the amount of plant ethylene and the extent of its inhibition on

root elongation. Thus, these plants should have longer roots and possibly longer

shoots as well, stem elongation is also inhibited by ethylene, except in ethylene-

resistant plants (Van Loon and Glick 2004).

4.5.2 Auxins

One of the direct mechanisms by which PGPR promote plant growth is by produc-

tion of plant growth regulators or phytohormones (Glick 1995). Frankenberger and

Arshad (1995) have discussed in detail the role of auxins, cytokinins, gibberellins,
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ethylene, and abscisic acids (ABA) which, when applied to plants, help in increas-

ing plant yield and growth. Microbial production of individual phytohormones such

as auxins and cytokinins has been reviewed by various authors over the last 20 years

(Pilet et al. 1979; Hartmann et al. 1983; Fallik and Okon 1989; Barbieri and Galli

1993; Patten and Glick 1996, 2002). Auxins are a class of plant hormones and one

of the most common and well characterized is indoleacetic acid (IAA), which is

known to stimulate both rapid (e.g., increases in cell elongation) and long-term

(e.g., cell division and differentiation) responses in plants (Glick 1995). Some of the

plant responses to auxin are as follows: (a) cell enlargement, (b) cell division, (c)

root initiation, (d) root growth inhibition, (e) increased growth rate, (f) phototro-

pism, (g) geotropism, and (h) apical dominance (Frankenberger and Arshad 1995;

Leveau and Lindow 2005). Most notably, exogenous auxin production by bacteria

has been associated with altered growth of the roots of plants on which they were

inoculated. While many plant growth-promoting bacteria, which stimulate the

growth of roots, can produce at least small amounts of the auxin indole-3-acetic

acid (IAA), high IAA producers are inhibitory to root growth (Lindow et al. 1998).

Bacterial IAA producers (BIPs) have the potential to interfere with any of these

processes by input of IAA into the plant’s auxin pool (Leveau and Lindow 2005).

IAA is a common product of L-tryptophan metabolism by several

microorganisms including PGPR. Promotion of root growth is one of the major

markers by which the beneficial effect of plant growth-promoting bacteria is

measured. Rapid establishment of roots, whether by elongation of primary roots

or by proliferation of lateral and adventitious roots, is advantageous for young

seedlings as it increases their ability to anchor themselves to the soil and to obtain

water and nutrients from their environment, thus enhancing their chances for

survival (Patten and Glick 2002).

Bacteria belonging to the genera Azospirillum, Pseudomonas, Xanthomonas, and
Rhizobium as well as Alcaligenes faecalis, Enterobacter cloacae, Acetobacter
diazotrophicus, and Bradyrhizobium japonicum have been shown to produce auxins

which help in stimulating plant growth (Patten and Glick 1996).

4.5.3 Hydrogen Cyanide

Cyanide is a potential inhibitor of enzymes involved in major plant metabolic

processes including respiration, CO2 and nitrate assimilation, and carbohydrate

metabolism and may also bind with the protein plastocyanin to block photosyn-

thetic electron transport (Grossman 1996). HCN is a potent inhibitor of cytochrome

c oxidase and of several other metalloenzymes—some of them involved in respira-

tory processes. HCN biosynthesis is catalyzed by HCN synthase, from glycine, with

stoichiometric production of CO2. HCN affects sensitive organisms by inhibiting

the synthesis of ATP mediated by cytochrome oxidase and is highly toxic to all

aerobic microorganisms at picomolar concentrations (Pal and McSpadden 2006).

No role is known for HCN in primary bacterial metabolism, and it is generally
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considered as a secondary metabolite (Blumer and Haas 2000). HCN-producing

bacteria can help plants in their defense against fungal pathogens (Voisard et al.

1989; Blumer and Haas 2000). This property was predominantly described among

Pseudomonas strains (Kremer and Souissi 2001). Therefore depending on the target

organisms, HCN-producing microorganisms are regarded as harmful when they

impair plant health and beneficial when they suppress unwanted components of the

microbial community (Bellis and Ercolani 2001).

Hydrogen cyanide production is a physiological activity which is energetically

dependent on the availability of organic carbon sources and low oxygen pressure,

i.e., conditions which commonly prevail in the rhizosphere (Tarnawski et al. 2006).

It has been shown that cyanide released by Pseudomonas fluorescens suppresses the
growth of microorganisms (e.g., phytopathogenic bacteria and fungi) sharing the

same ecological niche (e.g., the rhizosphere), thereby acting as a biocontrol metab-

olite (Voisard et al. 1989). Hence, cyanide production would increase the biological

fitness by providing cyanogenic species with a selective advantage over

competitors (Haas and Défago 2005; Voisard et al. 1989). The production of

HCN by certain fluorescent pseudomonads is believed to be involved in the

suppression of root pathogens. P. fluorescens CHA0 produces antibiotics,

siderophores, and HCN, but suppression of black rot of tobacco caused by

Thielaviopsis basicola appeared to be primarily due to HCN production (Pal and

McSpadden 2006).

4.5.4 Ammonia

Biological N2-fixation (BNF) by soil microorganisms is considered one of the

major mechanisms by which plants benefit from the association of micropartners.

One of the benefits that diazotrophic microorganisms provide to plants is fixed

nitrogen in exchange for fixed carbon released as root exudates (Glick 1995). Many

of the PGPR described to date are free-living diazotrophs that can convert molecu-

lar nitrogen into ammonia in a free state by virtue of the nitrogenase enzyme

complex (Postgate 1982; Saikia and Jain 2007). Raj Kumar and Lakshmanan

(1995) suggested that ammonia excretion seems to be the result of nitrogenase

activity in symbiotic associations where relatively large amounts of atmospheric N

reach the plant as ammonia released by the bacteroids. By contrast, most of the

ammonia produced in PGPB by the nitrogenase-catalyzed N2 fixation would be

assimilated by the rhizobacteria through the glutamine synthetase/glutamate

synthase (GS/GOGAT) pathway. Also plant growth-promoting bacteria contain

the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase and this

enzyme can cleave the ethylene precursor ACC to α-ketobutyrate and ammonia

and thereby lower the level of ethylene in developing or stressed plants (Hontzeas

et al. 2004a, b).
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4.5.5 Phosphate Solubilization

Bacteria isolated from the rhizosphere are capable of increasing availability of

phosphorus to plants either by mineralization of organic phosphate or by solubili-

zation of inorganic phosphate by production of acids (Lifshitz et al. 1987). These

bacteria referred to as phosphobacteria and have been considered to have potential

use as bioinoculants.

Many soil microorganisms are able to solubilize “unavailable” forms of cal-

cium-bound P through their metabolic activity by excreting organic acids which

either directly dissolve rock phosphate or chelate calcium ions to bring P into

solution (Fig. 4.2). The production of microbial metabolites results in a decrease

in soil pH, which probably plays a major role in solubilization. Besides changes in

pH, chelation by organic acids which bind phosphate anions also brings about

phosphate in soil solution. Soil inoculation with phosphate solubilizing bacteria

has been shown to improve solubilization of fixed soil P and applied phosphates

resulting in higher crop yields (Nautiyal et al. 2000).

4.5.6 Exopolysaccharide

Exopolysaccharide is a term first used by Sutherland to describe high molecular

weight carbohydrate polymers produced by marine bacteria. EPS can be found as

capsular material that closely surrounds a bacterial cell or as a dispersed slime in the

surrounding environment with no obvious association to any one particular cell

(Sutherland 1982; Decho 1990). In the natural environment bacteria occur mostly in

aggregates whose structural and functional integrity is based on the presence of a

matrix of extracellular polymeric substance. Thus EPS production seems to be

important for their survival (Sutherland 1982).

Production of exopolymeric substances especially EPS by bacteria is one of the

mechanisms to overcome desiccation. The rate of drying within the colony micro-

environment is slower with EPS and helps increase bacterial survival by increasing

Fig. 4.2 Plate assays of P solubilizers Bacillus subtilis (Pikovskaya medium incorporated

with phenol red dye) and Microbacterium arborescens (Pikovskaya medium incorporated with

bromothymol blue dye) isolated from rhizosphere of coastal sand dune plants

88 A. Godinho and S. Bhosle



the time available for metabolic adjustment. Further an EPS matrix provides another

advantage to bacteria living within it as decreasing water content of soil restricts

diffusion of nutrients to microorganisms. Polysaccharides being hygroscopic maintain

higher water content in the colony microenvironment than in the bulk soil as water

potential declines. This increase in water content could increase nutrient availability

within the bacterial colony. Roberson and Firestone (1992) revealed that bacteria

respond to desiccation by channeling energy and nutrients into polysaccharide produc-

tion. Soil is an extremely heterogeneous environment, and wetting and drying may not

proceed uniformly throughout it, and any microbial processes in soil depend on this

heterogeneity.Godinho andBhosle (2009) studied the aggregation of sanddune soils by

exopolysaccharide-producingMicrobacterium arborescens, a sand dune rhizobacterial
isolate (Fig. 4.3). It was observed that the rhizosphere and endophytic bacteria

associated with the sand dune plants may be playing an important role in aiding in

the survival of these plants in the sand dunes. Coastal sand dunes is a previously

unexplored habitat for EPS-producing bacteria. These exopolymeric substances might

be involved in ecological roles, protecting the cells against dessication especially in

nutrient-limited environments such as the coastal sand dunes more so in the extreme

conditions of pH. Such polysaccharides may be helping the bacteria to adhere to solid

substrates and survive during nutrient limited conditions.

4.5.7 Siderophores

Iron is the fourth most abundant element on earth, but in the presence of oxygen and

at neutral pH, it is not sufficiently available to microbes due to the rapid oxidation

of Fe+2 to Fe+3 and the formation of ferric hydroxides and oxyhydroxide polymers

(Neilands 1995). Concentration of free iron in soil under these conditions is as low

as 10�17M, which is much less than that required for optimal growth of soil

microflora (Guerinot et al. 1990). A large number of proteins require iron for

their activity, which underlines the importance of iron for living organisms. The

iron that is present in proteins can exist in several different forms: heme,

iron–sulfur, iron–nickel, di-iron, and mononuclear iron (Andrews 1998).

Iron ismade biologically available by iron-chelating compounds called siderophores

that are synthesized and secreted by many bacteria and fungi under conditions of

iron limitation (Fig. 4.4) (Neilands 1995). Siderophores are water-soluble, low

molecular weight molecules that are secreted by bacteria and fungi. The term

Fig. 4.3 Viscous

exopolymer produced by sand

dune rhizobacteria

M. arborescens
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siderophore stands for “iron carriers” or “iron bearers” in Greek. This is an appropriate

term because the siderophore binds iron with an extremely high affinity and is specifi-

cally recognized by a corresponding outer membrane receptor protein, which in turn

actively transports the complex into the periplasm of the cell (Braun and Braun 2002;

Gomez and Sansom 2003) or which imparts specificity of uptake and works in associa-

tion with periplasmic iron-binding proteins and cytoplasmic membrane-associated

proteins (Gomez and Sansom 2003). The molecular weights of siderophores range

from approximately 600 to 1,500 Da, and because passive diffusion does not occur for

molecules greater than 600 Da, siderophores must be actively transported (Ishimaru

1993). The role of these compounds is to scavenge iron from the environment and to

make the mineral, which is almost always essentially present available to the microbial

cell (Neilands 1995). There are more than 500 different types of siderophores produced

by bacteria, yeasts, and fungi. Siderophores are produced and secreted only when the

amount of iron is low in the growth environment. The genes involved in siderophore

production regulate siderophore production based on the concentration of iron in the

environment. That is, siderophore production is shut offwhen iron is present at sufficient

concentration and vice versa.

Siderophores specifically bind to ferric ion with high affinity. The binding power

of the siderophore for iron has a stability constant range from 1022 to 1050 (Ratledge

and Dover 2000). This range is sufficiently high for the removal of iron attached to

molecules like ferritin and transferrin by siderophore, but not high enough for the

removal of iron present in heme proteins. Siderophore molecules display consider-

able structural variation but can be classified as either hydroxamates or catechols.

Structurally, 20 siderophores are ring- or semiring-shaped structures containing

oxygen atoms. Siderophores show high affinity for ferric ion, since the oxygen

atoms present can form coordination bonds with a single Fe(III) ion (Neilands

1995). The production of siderophores has been reported in aerobic and facultative

anaerobic microbes, but their production has not yet been reported in strict

anaerobes, lactic acid bacteria, or in higher organisms such as plants and animals.

The main function of siderophores is involved in the high affinity acquisition and

receptor-dependent transport of ferric ion. Siderophores are also associated with

growth or germination factors and virulence factors.

Fig. 4.4 The yellow orange halo surrounding the bacterial colony is indicative of the production of

an Fe-binding compound such as siderophore, which removes Fe(III) from the Fe(III)–CAS–HDTMA

complex in the plate and turns the blue dye to yellow color. The bacteria were isolated from the

rhizosphere of sand dune plants
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In gram-negative bacteria, Fe+3 siderophores bind to highly specific receptor

proteins and are then transported into the cytoplasm (Faraldo-Gomez and Sansom

2003), while in gram-positive bacteria, which lack an outer membrane, the

receptors are binding proteins that are anchored to the cytoplasmic membrane by

a covalently linked lipid. A periplasmic transport protein and several inner mem-

brane-associated proteins complete the transport of iron into the cell. This arrange-

ment of proteins from periplasm to cytoplasm is similar to other bacterial

periplasmic protein-dependent systems, termed ABC transporters (for ATP-binding

cassette-type transport), which transport amino acids, peptides, and sugars into the

cell (Braun and Killman 1999; Clarke et al. 2001; Fatht and Kolter 1993).

4.5.8 Resting Bodies

Bacteria have also evolved numerous mechanisms of resistance to stress conditions

and nutrient limitations. For example, many microorganisms have an inherent

ability to form resting stages (e.g., cysts and spores). Even without the formation

of such elaborately differentiated cells, bacteria enter starvation-induced programs

that allow them to survive long periods of nongrowth and to restart growth when

nutrients become available again. This often leads to the formation of metabolically

less active cells that are more resistant to a wide range of environmental stresses.

This adaptation to starvation conditions is often accompanied by a change in cell

size as well as the induction of genes and the stabilization of proteins that are

essential for long-term survival. The best-studied examples of starvation–survival

in nondifferentiating bacteria are Escherichia coli, Salmonella typhimurium, and
Vibrio sp. strain S14, which show qualitative similarities in their survival responses

(Madison and Huisman 1999).

4.5.9 Nutrient Availability

Nutrients may become available locally, for example, in decaying plant and animal

material or via plant roots, which are one of the major sites of carbon input into soil.

The rhizosphere therefore is a soil region with a transiently high availability of

carbon in a form readily available to soil bacteria. Soil bacteria that have evolved in

close association with plants, such as rhizobia and pseudomonads, benefit from

being able to quickly escape the starvation state and colonize the plant root. The

accumulation of intracellular storage polymers is another bacterial strategy that

increases survival in a changing environment. Poly(3-hydroxyalkanoates) (PHAs)

are accumulated as discrete granules to levels as high as 90 % of the cell dry weight

and are generally believed to play a role as a sink for carbon and reducing

equivalents. The bacterial origin of PHAs makes these polyesters a natural material,
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and microorganisms have evolved ability to degrade these macromolecules

(Madison and Huisman 1999).

In bacteria, PHAs constitute a major carbon and energy storage material, which

accumulates when a carbon source is provided in excess and another nutrient (such

as nitrogen, sulfur, phosphate, iron, magnesium, potassium, or oxygen) is limiting.

The polymerization of soluble intermediates into insoluble molecules does not

change the osmotic state of the cell, thereby avoiding leakage of these nutrient-

rich compounds out of the cell. In addition, PHA-producing bacteria have the

advantage of nutrient storage at a relatively low maintenance cost and with a

secured return of energy (Berlanga et al. 2006). PHAs produced by these bacteria

are important due to their biodegradability, water resistance, and oxygen perme-

ability. Their applications are varied; they are used for all sorts of biodegradable

packaging materials (Thakor et al. 2006).

In our study since the bacteria were isolated from coastal ecosystem, we evaluated

their growth-promoting ability under a similar ecosystem. Eggplant was selected as a

model plant as it is popularly grown in Goa. The four sand dune bacterial isolates

chosen for the study were B. subtilis, M. arborescens, K. rosea, and B. subtilis
sp. MF-4 shows good ACC deaminase activity, HCN production, IAA and

siderophore production, and phosphate solubilization. Results of pot studies indicated

that K. rosea and B. subtilis increased shoot length and weight of the plants consis-

tently up to 44 DAS. However Bacillus sp.MF-A4 increased the growth significantly
from 37 DAS after sowing, whileM. arborescens was effective in the latter stages (at
44DAS). The study confirmed the bioprospects of using the sand dune bacteria as

biofertilizers for agricultural crops (Godinho et al. 2010).

4.6 Concluding Remarks and Future Perspectives

This chapter contributes significantly to the knowledge of the wide occurrence of

effective PGPR bacteria associated with sand dune vegetation in the ecosystem. A

large number of bacteria are associated with rhizosphere and as endophytes with

vegetation growing on coastal sand dunes. Such organisms are shown to play a role

in promoting growth of plants by making the soils available with nutrients. Plant

growth-promoting characteristics of promising isolates studied indicated that native

plant growth-promoting microorganisms with properties such as phosphate solubi-

lization, disease control potential, and rhizosphere colonization would seem ideal

for selection as a suitable bioinoculant. The cultures were found to produce

siderophores, solubilize inorganic phosphates, ammonia, hydrogen cyanide, and

indole-3-acetic acid. All these metabolites are important for plant growth promo-

tion. They were all found to utilize ACC as a sole source of nitrogen further

confirming the presence of ACC deaminase enzyme.

Plant growth-promoting sand dune rhizobacteria therefore present an alternative

to the use of chemicals for plant growth enhancement in many different

applications. This research work has demonstrated that sand dune rhizobacteria
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could have an important role in agriculture and horticulture in improving crop

productivity. Among the four sand dune bacterial isolates, B. subtilis, K. rosea, and
M. arborescens were found to have a significant effect on plant growth promotion

of eggplant, an agriculturally important crop.
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Chapter 5

Plant-Associated Bacteria in Nitrogen

Nutrition in Crops, with Special Reference

to Rice and Banana

Md. Abdul Baset Mia, Md. Motaher Hossain, Zulkifli Haji Shamsuddin,

and M. Tofazzal Islam

5.1 Introduction

Nitrogen is a key component of many biomolecules such as nucleic acids and

proteins—the two most important polymers of life. The requirement of nitrogen for

life is enormous. Depending on the life form, two to twenty atoms of nitrogen are

needed for every 100 atoms of carbon incorporated into cells (Sterner and Elser

2002). Despite the paramount importance of nitrogen in living organisms, N2 is

basically inert. Therefore, fixed inorganic nitrogen usually in ionic forms [most

commonly nitrate (NO3
�) and ammonium (NH4

+) ions] limits primary productivity

in both terrestrial and marine ecosystems (Falkowski et al. 2008). Obviously, the

availability of fixed inorganic nitrogen is the most limiting factor for crop produc-

tivity. Global agriculture has to adjust with the increasing demands of nitrogen

nutrition in crop plants to ensure food security of increasing population of the world

in the twenty-first century. The limited nitrogen availability for crop plants has long

been overcome through applications of synthetic nitrogen-rich fertilizers such as

urea. In fact, the increased use of chemical fertilizers has revolutionized crop yield

and food production worldwide. However, it causes the largest human interference
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in the nitrogen cycle, which has prompted concerns regarding the substantial

economic cost and environmental pollution due to increased emissions of nitrogen

oxides, soil acidification, and eutrophication in the aquatic environment (Dixon and

Kahn 2004). The environmental cost due to application of inorganic fixed N2 is

about $100 billion per year including the cost of global industry and environmental

nitrogen pollution (Beatty and Good 2011). Therefore, growing calls emerged in

recent days for global action to address the source of nitrogen pollution and to

assess the way forward in reducing the dependence on synthetic inorganic nitrogen

fertilizer in agriculture.

Most nitrogen exists in the atmosphere as N2 gas, and hence, utilization of this

natural source is considered as a viable option for nitrogen nutrition in plants.

However, the ability to fix atmospheric nitrogen is restricted to prokaryotes in the

bacterial and archaeal domains, so-called diazotrophs that convert atmospheric

nitrogen into ammonia (Canfield et al. 2010). Nitrogen-fixing bacteria include

diverse phylogenetic groups such as green sulfur bacteria, actinomycetes,

cyanobacteria, and all subdivisions of the Proteobacteria. However, in Archaea,

nitrogen fixation is mainly restricted to methanogens (Dixon and Kahn 2004). The

nitrogen-fixing ability in bacteria also contains a wide range of physiologies

including aerobic (e.g., Azotobacter), facultatively anaerobic (e.g., Klebsiella) or
anaerobic (e.g., Clostridium) heterotrophs, anoxygenic (e.g., Rhodobacter) or oxy-
genic (e.g., Anabaena) phototrophs, and chemolithotrophs (e.g., Leptospirillum
ferrooxidans) (Dixon and Kahn 2004; Kneip et al. 2007; Canfield et al. 2010).

Interestingly, diazotrophs are found in a wide variety of habitats including free-

living in soils and water, associative symbioses with grasses, symbiotic associations

in termite guts, actinorhizal associations with woody plants, cyanobacterial symbi-

osis with various plants, and root–nodule symbioses with legumes (Dixon and Kahn

2004; Kneip et al. 2007).

Biological nitrogen fixation (BNF) by variety of symbiotic, associative, and free-

living microorganisms has tremendous importance to the environment and to world

agriculture. Nitrogen fixation is considered as one of the key steps of the nitrogen

cycle as it replenishes the overall nitrogen content of the biosphere and

compensates for the losses that are incurred due to denitrification. The fixed N2

that is provided by BNF is less prone to leaching and volatilization as it is utilized in

situ. Therefore, this biological process contributes as an important and sustainable

input into agriculture (Dixon and Kahn 2004). Root nodule symbiosis of N2-fixing

bacteria provides legumes with enhanced capacity to obtain fixed N2 (Quispel

1974). The discovery of symbiosis between N2-fixing bacteria and legumes raises

the eventual question of whether such a relationship is possible for nonlegume

plants (Mia and Shamsuddin 2010a). More research is needed to find molecular

mechanisms of BNF in non-legume crop species based on our understanding of

nitrogen fixation biology in legumes (Godfray et al. 2010). Recently, Markmann

et al. (2008) have found that several genes, including the so-called symbiosis

receptor kinase (SYMRK) gene, are involved in a genetic program that links

arbuscular mycorrhiza and one form of bacterial nodule symbiosis. And the analy-

sis of SYMRK in several species of plant provided the striking evidence that most
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plants have a short version of SMYRK, which is required for AM symbiosis, while

a longer variant was found only in plants involved in the symbiotic relationships

with nitrogen-fixing bacteria. This finding can be considered as an important step

toward understanding the evolution of nitrogen fixation in plants, and even whether

plants that do not form symbiosis with nitrogen-fixing bacteria could be engineered

to do so, thus increasing their N nutrition to ensure higher productivity.

Nitrogen is highly mobile in the plant system, deficiency symptoms quickly

develop due to shortage of its supply, and therefore, frequent supply is beneficial for

the crop growth and development. Like other non-legumes, rice and banana suffer

from a mismatch of its N demand. Biological N2 fixation (BNF) technology can

play an important role in substituting for commercially available N-fertilizer use in

these crops. Making crop plants capable of fixing their own nitrogen via a close

interaction with diazotrophic bacteria may be used as an alternative strategy for

solving nitrogen nutrition in economically important crops like rice and banana.

Therefore, plant-associative and endophytic bacteria either in roots or shoots could

be targeted as the potential inoculants of N2 fixation in rice and banana plants (Mia

et al. 2010). Although providing nitrogen nutrition to rice and banana through BNF

is a novel approach, however, its potential has a considerable payoff in terms of

increasing the production of these crops that not only help resource-poor farmers

for reducing cost of production but also significantly reduce environmental pollu-

tion (Cassman et al. 1998; Ladha et al. 1997).

A large body of literature indicates that both associative and endophytic bacteria

isolated from rice and bananas have potentials for nitrogen nutrition in host plants

(Table 5.1). Although several good reviews have recently been published on

diazotrophic bacteria in nitrogen nutrition in plants (Beatty and Good 2011; Doty

2011; Borriss 2011), however, very few of them have been focused on the roles of

plant-associative bacteria in nitrogen nutrition with practical examples in major crop

plants like rice and banana. In this chapter, we attempt to review current knowledge

on potentials for nitrogen nutrition in crop plants by the application of plant-

associative bacteria. This review covers bioassay methods for isolation, screening,

and identification of nitrogen fixing bacteria; their root colonization ability; and

effects of bacteria on nitrogen nutrition in plants. Current knowledge of molecular

mechanisms of nitrogen nutrition of plants by diazotrophic bacteria and biotechno-

logical approaches for exploiting these mechanisms for better nitrogen management

in crop production is also discussed, with special reference to rice and banana.

5.2 Isolation, Screening, and Identification of Bacteria

Bacteria from diverse taxonomic groups have been found to inhabit the rhizosphere

and endorhizosphere of rice and banana (Jha et al. 2009). The association between

these diazotrophs and plant roots is one of the potentials for increasing N nutrition

(Rao and Adhya 1994). Several lines of evidence suggest that diazotrophic bacteria

have been isolated from diverse environmental origins ranging from soils, water,
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rhizosphere, rhizoplane, and inside the plant tissues. For example, Herbaspirillum
frisigense has been isolated as diazotrophic bacterium from two C4 grasses,

Miscanthus sinensis and Pennisetum purpureum (Jha et al. 2009). Similarly, vari-

ous diazotrophs, related to Azospirillum amazonense, A. lipoferum, Burkholderia
sp., and a group of similar to the genus Herbaspirillum sp. have been isolated from

rhizosphere of banana and pineapple (Weber et al. 1999). On the other hand, some

other genera of diazotrophic bacteria have been isolated from the internal tissue

(endophytes) of many poaceaeous shoot and roots which includes Burkholderia
sp. (Hartmann et al. 1995) and Acetobacter diazotrophicus (Cavalcante and

Dobereiner 1988; Dobereiner et al. 1993). Azospirillum brasilense and two

groups of Herbaspirillum-like bacteria have been isolated from banana roots

(Weber et al. 1999).

Some convenient methods have been established for isolation of bacteria from

the rhizosphere, rhizoplane, and internal tissues of plants (Islam et al. 2007; Islam

2011; Islam and Hossain 2012, 2013). Generally, isolation of bacteria from roots,

rhizoplane, and rhizosphere is done by using dilution plate or streak culture

methods on suitable agar medium (Muthukumarasamy et al. 2007; Islam et al.

2007). The potential of isolates as diazotrophic is generally assessed by in vitro

screening through various semisolid nitrogen-free media (Dobereiner 1995).

The candidate isolates selected from the in vitro screening are further tested by

assessing the in situ acetylene reduction assay (ARA) that indirectly measures the

nitrogen fixing ability of the bacteria through estimating nitrogenase enzyme

activity based on electron flux (Danso 1985). The assessment of ARA can be

performed in pot culture using soil or other growing media wherein field condition

to confirm the BNF potential in association with the test crops can be performed by
15N isotopic dilution technique (Boddey et al. 1996). Recently, metagenomic

analysis has been applied to investigate diazotrophic endophytic bacteria recalci-

trant to cultivate in the culture media (Sessitsch et al. 2012). This approach will help

provide a deeper understanding of endophytic functions and mechanisms for their

establishment in the endosphere which could be exploited to improve agricultural

management practices with respect to nitrogen nutrition in crop plants.

To confirm the phylogenic affiliation of elite bacterial isolate, classical methods

based on morphological, physiological, and biochemical features have been used

(Prayitno and Rolfe 2010). However, morphological, physiological, and biochemi-

cal tests have sometimes been found insufficient for accurate identification of the

bacteria. Therefore, molecular techniques such as gene sequencing have widely

been used as an acceptable method for proper identification of the bacteria

(Magalhaes et al. 2001). Nowadays, 16S rRNA gene sequencing has been found

useful for identification and studying microbial ecology of N2-fixing bacteria (Reis

et al. 2004; Islam et al. 2005, 2007; Fürnkranz et al. 2008). The extent of divergence

in the sequence of this gene provides an estimate of the phylogenetic distance

existing between different species (Igual et al. 2001).

A simplified diagrammatic scheme has been presented below (Fig. 5.1) to show

steps of isolation, screening, and identification of associated diazotrophic bacteria:
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5.3 Root Colonization Ability of Bacteria

Root colonization either associative or endophytic is precondition for successful

establishment of beneficial bacteria on plants (Suslow 1982; Islam et al. 2005,

2007). The process of root colonization of bacteria is known to have several stages,

namely, the movement of microbes to the plant root guided by host signal (e.g.,

flavonoid), adsorption or invasion to the roots, and specific complex molecular

interactions between the bacterium and the host plant, leading to induction of

bacterial gene expression (Brimecombe et al. 2001). The attachment of bacteria

to the host plant roots is essential for the establishment of an efficient and persistent

beneficial association between host and bacteria (Brudman et al. 2000). This is

owing to the following reasons: (1) bacteria should be attached to the root epider-

mal cells and if not, nutrient and bioenhancing substances excreted from the

bacteria will not be utilized by the host plants; (2) without a protected attachment,

water may wash the bacteria away from the rhizosphere to pass away in the

Collection of roots from rice/banana plants

Removal of adhering soil particles through washing for associative
bacteria but surface sterilization for endophytic bacteria

Piecing the roots and put on the N-free growth media and
incubate for bacterial growth

Isolation of pure colonies of bacteria

In vitro ARA test for N2 fixing capacity in solid and liquid media

In vivo ARA test under pot culture condition using test crop 

Quantification of fixed N2 under field condition using 15N
isotopic dilution / total N difference technique

Identification of bacteria through molecular techniques such
as 16S rRNA gene sequencing 

Fig. 5.1 A simplified schematic representation of the isolation, screening, and identification of

associative and endophytic bacteria from roots
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surrounding, nutrient-deficient soil; and (3) association sites on roots with no

attached beneficial bacteria are susceptible to other aggressive and possibly non-

beneficial microorganisms (Bashan and Holguin 1997). Therefore, in compatible

host, epiphytic bacteria attach actively and then form a stable biofilm on the surface

of root (Islam et al. 2005, 2007; Islam 2010).

On the other hand, endophytic bacteria colonize inside the tissues of the

roots, stems, and leaves of different plants where they face less competition from

other microorganisms for carbon sources and excrete part of their fixed N2 directly

into the host cell as NH4
+ ion (Baldani et al. 2000; Mia and Shamsuddin 2010b).

Several endophytic bacteria, namely, Pantoea, Methylobacterium, Azospirillum,
Herbaspirillum, Burkholderia, and Rhizobium, have been observed colonized

inside the rice plants (Mano and Morisaki 2008). Bacterial strains of A. brasilense
and B. sphaericus successfully formed colonies on the banana roots (Fig. 5.2) (Mia

et al. 2010). Although endophytic bacteria have been recognized to originate from

outside of the plant body, they enter the plant system through stomata, lenticels,

cracks of epiblema, epidermis of shoot, entry of lateral roots, and emerging radicles

(Huang 1986). Electron micrographs from the root colonization study in rice and

bananas clearly demonstrated that the bacteria can colonize the root surface effi-

ciently, and more bacteria were found in the root hair propagation zone than the root

hair itself, which is free from bacterial cells (Mia et al. 1999, 2010). In general,

bacteria colonize just behind the root cap to have steady supply of root exudates

(Islam et al. 2005). However, root caps of many plants have been found free from

bacterial colonization (Foster and Bowen 1982). Several lines of evidence suggest

that the associative bacteria that colonize rice roots are also found in the seeds

(Sundaram and Klucas 1988). Similarly, bacteria, those found in the apoplastic site

of banana roots, exert direct effect on intercellular space of roots which developed

through schizogenously (Mia et al. 1999). Within the apoplastic region they find

micro-niches to fix N2 without having any competition with other organisms. The

entry of bacteria inside the cortex was done likely through crack of epiblema or

apoplastically by the activity of cellulase enzyme as the cell wall of young root was

mainly composed of cellulose (Esau 2002).

Fig. 5.2 Root colonization of

associative bacteria. (a) Root

surface of banana by

Azospirillum brasilense. (b)
Endophytic colonization by

A. brasilense in banana roots.

White error bar in (b) is 1 μm
(adapted from Mia and

Shamsuddin 2010b)
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5.4 Effects of Bacteria on Nitrogen Nutrition in Rice and

Banana

In symbiotic association, the bacterium undergoes a highly specific interaction with

the plant, involving several stages of developmental process and complex signal

exchanges between the bacterium and plant (Sprent 1989). The plants supply

simple carbon compounds to the bacteria as root exudates, and in return, the

bacteria convert nitrogen (N2) from air and excrete part of their fixed N2 directly

into the host cell as NH4
+ ion for the use of plant host. The endophytic bacteria also

enhance plant growth by doing bioenhancing activity through production of

phytohormones. The complex interaction of associative and endophytic bacteria

with host plants can be schematically presented in Fig. 5.3.

5.4.1 Nitrogen Fixation by Bacteria in Association with Rice
and Banana Root

Nitrogen fixation was the first mechanism anticipated to explain improved plant

growth following inoculation with associative beneficial bacteria. This was largely

due to an increase in N-compound and nitrogenase enzyme activity in inoculated

plants (Bashan and Holguin 1997). Researches using N-balance, 15N isotope dilu-

tion, and 15N enrichment studies have offered strong proof that some nonlegumes,

especially rice, sugarcane, grasses, and bananas, can obtain at least part of their

Fig. 5.3 A simplified schematic representation of the beneficial interactions of associative and

endophytic bacteria with plant roots
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N-needs through BNF process (Chalk 1991; Urquiaga et al. 1992; Shrestha and

Ladha 1996; Malik et al. 1997; James and Olivares 1998; James 2000; Mia et al.

2007; Mano and Morisaki 2008). Recent evidence of significant BNF contribution

in economically important poaceaeous crops, particularly rice (Shrestha and Ladha

1996), banana (Mia et al. 2007; Mia and Shamsuddin 2009a), sugarcane (Urquiaga

et al. 1992), and forage grasses, such as kallar grass (Malik et al. 1997), has created

tremendous interest on N2 fixation by associative and endophytic bacteria.

The association of the N2-fixing bacteria Azospirillum spp. with roots of

graminaceous plants has shown considerable rate of N2 fixation (Nur et al. 1980;

Van-Berkum and Bohlool 1980; Watanabe and Lin 1983; Charylulu et al. 1985;

El-Komy et al. 1998). Using the 15N isotope dilution technique, Baldani et al.

(1997) and Mia et al. (2007) demonstrated that N2-fixing bacteria could accumulate

about 20 kg N ha�1 year�1 in Paspalum notatum cv. batatais. Results of Mia et al.

(2007) on associative bacterial inoculation on tissue-cultured banana plantlets

indicated that A. brasilense and B. sphaericus can fix around 33–37 % of required

N through BNF process (Fig. 5.4).

5.4.2 Release of Fixed N2 from Bacteria to Plant Cell

The quantity of transferable fixed N2 by rhizobacteria to their host plants greatly

varies among the genotypes of bacteria (Kapulnik et al. 1985; Boddey et al. 1986;

Kucey 1988). Studies using the 15N isotope dilution technique indicated that most

of the fixed N2 remained below ground, probably still bound to bacterial cells, and

contributed very little to growth of the upper plant parts (Nayak et al. 1986; Boddey

and Dobereiner 1988). The limited N supply from N2 fixation is probably because

free-living diazotrophs release very small portion of the fixed N2 to the environ-

ment. On the other hand, endophytic bacteria have greater advantages over free-

living rhizobacteria because there is no chance of washing out the fixed N2 as the

bacteria inhabit inside the host tissue. However, the releasing NH4
+ from endo-

phytic bacteria is distinct from legume–Rhizobium symbiotic system. The bacteria

Fig. 5.4 Nitrogen fixation in

banana plantlets (40 day old)

by the associative bacteria

Azospirillum sp. SP7 and

Bacillus sp. UPMB10

(adapted from Mia et al.

2007). Bars showing same

letter do not differ

significantly at 5 % level of

significance
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may secrete the fixed N2 as NH4
+; however, mechanism of NH4

+ excretion varies

among the genotypes of bacteria (Mia and Shamsuddin 2010b). In endophytic

system, the exact mechanism of releasing NH4
+ from bacterial cytoplasm has not

been clearly understood. However, once the NH4
+ comes out from the bacterial

cells to the apoplastic region, it is easily transported to the host cell via passive or

active transport.

5.4.3 Stimulation of Membrane ATPase and Enhanced Uptake
of Nutrient

Enhanced mineral uptake in inoculated nonlegumes was proposed as a possible

mechanism of plant growth enhancement by plant growth-promoting associative

bacteria where the major elements involved were suggested to be N, Ca, and Mg in

the roots only (Mia et al. 2005, 2009). The N was incorporated from atmospheric

N2, and other elements such as P, K, Ca, and Mg also play a key role in this

plant–bacterium interaction. Shamsuddin et al. (1999) found increased amounts of

P and K uptake in banana plants inoculated with rhizobacteria. Similarly, banana

plant inoculated with Azospirillum showed higher content of N, P, K, Ca, and Mg in

shoot biomass, while plant treated with Bacillus had only the higher content of N

and K compared to that with untreated plant (Table 5.2) (Mia et al. 2010). Mixed

culture of Azospirillum, Azotobacter, and inorganic N-fertilizer resulted in taller

plants, number of leaves, and girth of bananas (Wange and Patil 1994). Inoculation

of A. brasilense increased the dry weight, plant height, P absorption, and lipid

content in oil seed (Bashan et al. 2000).

The bacteria secrete the signaling substances, which is perceived by the root

plasma membrane and stimulate the membrane-bound ATPase enzyme (Bashan

and Holguin 1997). The stimulation of ATPase enzyme induces the proton efflux

which resulted in the uptake of nutrient ions especially the cations. This is of

importance since mineral uptake is usually closely related to membrane activity.

A. brasilense inoculation can affect membrane activity and proton efflux of wheat

root which requires high metabolic activity of both participants in the

plant–bacteria association and may be involved in increasing mineral uptake of

Azospirillum–inoculated plants (Bashan 1990). Inoculation with A. brasilense

Table 5.2 The N, P, K, Ca, and Mg concentration in shoot of bananas inoculated with

Azospirillum sp. SP7 and Bacillus sp. UPMB10 (adapted from Mia et al. 2010)

Treatments

Nutrient concentration in shoot (%)

N P K Ca Mg

N33 % (control) 0.89c 0.46b 3.8b 0.52b 0.10b

N33 % + Azospirillum 1.15b 0.65a 4.2a 0.60a 0.14a

N33 % + Bacillus 1.36a 0.48b 4.5a 0.54b 0.11b

Note: Values in a column having same letter(s) are not significantly different at 5 % level of

probability
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increased proton efflux in their roots and changed the phospholipid content in

cowpea plant membranes (Bashan et al. 1990, 1992).

5.4.4 Influence of Bacterial N Supply on Ionic Balance in
Plant Tissue

Inoculation of associative and endophytic bacteria in rice and bananas has been

shown to alter the tissue ionic ratio of P/N, K/N, Ca/N, andMg/N. Our experimental

results indicated that B. sphaericus significantly diluted the P, K, Ca, and Mg

concentration in the tissue of rice seedlings indicating a higher incorporation of N

which might come from fixed N2 or added N from enhanced uptake (Table 5.3).

5.4.5 Plant Growth and Development

Bacteria that can increase plant growth and productivity have been known as plant

growth-promoting bacteria (PGPB) for over a century. Plant growth promotion and

development are facilitated by plant association with endophytic and associative

bacteria through the synthesis of plant growth hormones (Amer and Utkhede 2000),

N2 fixation (Cakmakci et al. 2001; Islam 2011), solubilization of insoluble nutrient

element (Islam et al. 2007; Islam and Hossain 2012), and increase uptake of other

nutrients (Sahin et al. 2004).

5.4.5.1 Root Growth and Hair Formation

Increased root growth and activity were suggested in the late 1970s as a possible

mechanism by which beneficial bacteria affects plant growth (Fallik et al. 1994)

Table 5.3 Altered ionic ratio of inoculated rice tissue due to application of associative and

endophytic bacteria

Treatments

Ionic ratio

P/N K/N Ca/N Mg/N

Control 0.45b 1.10b 0.08a 0.08a

Rhizobium sp. 0.45b 0.93c 0.10a 0.09a

Azorhizobium sp. 0.46b 1.20b 0.08a 0.07ab

Rhizobium sp. 0.54a 1.04c 0.07ab 0.07ab

Rhizobium sp. 0.46b 1.22b 0.07ab 0.07ab

Bacillus sp. 0.41c 0.98c 0.06b 0.06b

Burkholderia sp. 0.48b 1.37a 0.08a 0.08a

Note: Values in a column having same letter(s) are not significantly different at 5 % level of

probability
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where higher number of root hairs increased the surface area of a root system. In

emerging rice seedlings, abundant root hair formation and enhanced plumule and

radicle growth were observed by the associative and endophytic bacterial inocula-

tion (Fig. 5.5a–d) (Mia and Shamsuddin 2009b, 2010b). However, in inoculated

tissue-cultured banana plantlets, the increased root growth occurred almost in all

dimensions, such as production of primary and secondary roots, longer roots, and

higher root mass (Fig. 5.5e–g) (Mia et al. 2009). The higher number of secondary

root initiation in A. brasilense inoculated plants could be due to the presence of

more bacterial cells and their beneficial interaction in the hair formation zone vis-a-
vis the zone of secondary root formation. This interaction might stimulate pericycle

to produce more lateral roots as pericycle is the site of lateral root formation. The

parenchymatous tissue of pericycle achieved meristematic activity by bacterial

activity. The possible route of bacterial movement from cortex to pericycle is

apoplastic in nature via intercellular space especially in young roots. Since the

casparian strip of endodermis is not well developed in very young roots, the

endophytic bacteria may get extra benefits for their easy traveling (Esau 2002).

This is supported by Bilal et al. (1993) and Mia et al. (2010) who found that more

bacterial cells were found in the root hair zone, in an area around the point of lateral

roots emergence of grasses.

Fig. 5.5 Effects of bacterial inoculation on root growth of rice and banana seedlings. (b) and (c)

Germinated rice seedlings showing less root hair (control); (a) and (d) Rhizobium sp. UPMR29

inoculated germinated rice seedlings showing profuse root hairs (adapted from Mia and

Shamsuddin 2010b); (e) Control banana seedling with less developed roots; Azospirillum
brasilense SP7 (f) and Bacillus sphaericus UMPB10 (g) inoculated tissue-cultured banana

plantlets showing greater root growth
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It is also thought that the associative and endophytic bacteria have the potential

to synthesize plant hormone such as cytokinins, gibberellins, and auxin for stimu-

lation of root growth (Tien et al. 1979; Molla et al. 2001). Associative and

endophytic bacterial inoculation in rice and bananas has been shown to enhance

cell division in the root meristematic zone (Levanony and Bashan 1989), while in

maize it increased diameter and length of lateral roots (Hartmann et al. 1983), and

promoted root hair development and branching which caused polarization and

differentiation of root cortex cells (Kapulnik and Okon 1983).

5.4.5.2 Enhancement of Net Photosynthesis

Bacterial inoculation has been found to increase the photosynthetic rate of the host

plants. Inoculation of tissue-cultured banana plantlets with A. brasilense and

B. sphaericus significantly increased the net photosynthesis (Fig. 5.6) (Mia et al.

2010). Similarly Azospirillum and rhizobacterial inoculation increased the photo-

synthetic rate of oil palm seedlings (Amir et al. 2001). The increased photosynthetic

activity (25 %) was due to more water and nutrient absorption. Higher leaf nutrient

concentration increased the leaf photosynthesis capacity (Amax), carboxylation

efficiency (Vcmax), and RuBP generation capacity (Jmax) across the plant king-

dom (Field and Mooney 1986). Photosynthetic capacity of N2-fixing bacteria was

higher compared to N user, since the former needed more photosynthate to meet the

higher demand by diazotrophs during the N2-fixing process (Quilici and Medina

1998). Strong sink strength of inoculated roots has been shown to induce an

increase in source leaf photosynthesis (De Veau et al. 1990). Inoculation of

associative bacteria also increased stomatal conductance by reducing proline accu-

mulation (Shamsuddin et al. 1999).

Fig. 5.6 Net photosynthesis

(Pn) in young expanded leaf

of bananas inoculated with

associative bacteria

Azospirillum brasilense SP7
and Bacillus sphaericus
UPMB10 (adapted from Mia

et al. 2010). Bars showing
same letter do not differ

significantly at 5 % level of

significance
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5.4.5.3 Shoot Growth and Early Flowering

Growth-promoting effects of associative bacterial inoculation are largely conse-

quential changing the morphophysiology state of plants, which may contribute to

the enhancement of shoot growth and earliness of plant reproductive activity. Murty

and Ladha (1988) found that inoculation of Azospirillum lipoferum to rice roots

caused significant increases in shoot fresh and dry weights but had no effect on root

surface area. The inoculation process also increased P content through P solubili-

zation (Bashan et al. 2000). Bacterial inoculation of banana plant effectively

increased the plant height, leaf number, leaf area, and leaf chlorophyll content.

Moreover, bacterial inoculation together with 33 % N-fertilizer application has

been shown to produce an equivalent total dry matter as the 100 % N-applied

control plants, an indication of the beneficial bioenhancing effect of bacteria

through higher photosynthetic activity and more nutrient (P, K, Ca, and Mg) uptake

(Mia et al. 2005, 2009). Inoculation of bacterial strain B. sphaericus also enhanced

the earliness of flower initiation in bananas as shown the Fig. 5.7 (right plant).

5.5 Molecular Basis of Biological Nitrogen Fixation in Plants

The components of the nitrogen acquisition pathway interact in multiple and

complex ways. The Rhizobium–legume symbiosis model had attracted series of

studies ever since Beijerinck’s demonstration that bacterium caused nodule forma-

tion (Quispel 1974). In the last four decades, considerable progress has been

made in elucidating the underlying molecular mechanism of nitrogen fixation

Fig. 5.7 Associative bacteria (Bacillus sphaericus) inoculation resulted in early flowering in

banana (adapted from Mia 2002)
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(Long 2001). However, the regulatory mechanisms involved in nonlegumes are still

insufficiently resolved. Herein, we discuss the molecular basis of signal transduc-

tion, transcriptional, and post translational regulation of biological nitrogen fixation

in plants.

5.5.1 Nod Factor Signals in Biological Nitrogen Fixation

The early steps of the nitrogen-fixing symbiosis between plants belonging to the

family Leguminosae and soil bacteria (e.g., Rhizobium) are mediated by an

exchange of chemical signals between the two partners. Much progress has been

made toward the characterization of biochemical signals during biological nitrogen

fixation in legumes (Stougaard 2001; Geurts and Bisseling 2002; Trevaskis et al.

2002). Perception of flavonoid signal (e.g., luteolin) that exudes from legume roots

triggers the production of rhizobial lipochitooligosaccharide (Nod factor, NF)

signals with strain-specific substitutions (D’Haeze and Holsters 2002). Recognition

of NFs by compatible LysM-type plant receptors induces the formation and defor-

mation of root hairs, intra- and extracellular alkalinization, membrane potential

depolarization, changes in ion fluxes, early nodulin gene expression (ENOD), and

formation of nodule primordia (D’Haeze and Holsters 2002; Capoen et al. 2010).

The extensive cell division and the production of cellulose microfibrils by the plant

lead to the formation of root nodules in which differentiated bacteria (bacteroids)

fix nitrogen for their host (Broughton et al. 2003). In most legumes, infection occurs

in susceptible root hair cells that curl to form a compartment for a bacterial

microcolony from which an intracellular infection thread guides the rhizobia to

the base of the root hair and, subsequently, through layers of cortical cells toward

the nodule primordium cells. There, rhizobia are engulfed by the plant plasma

membrane and differentiate into nitrogen-fixing bacteroids, thus forming a new

organelle called the symbiosome (Jones et al. 2007). The formation of symbiosomes

is presumed to represent a major step in the evolution of legume–nodule symbiosis,

because symbiosomes facilitate the exchange of metabolites between the two

symbionts. Within these symbiosomes, membrane-bound vesicular compartments,

rhizobia are supplied with energy derived from plant photosynthates and in return

supply the plant with biologically fixed nitrogen, usually as ammonia. This

minimizes or eliminates the need for inputs of synthetic nitrogen fertilizers

(Cocking et al. 2005).

Some of the plant genes involved (synonymously called the “common SYM” or

the “does not make infection” [DMI] genes) also are required for symbiosome

formation. The DMI2 gene mediates Nod factor perception and transduction lead-

ing to rhizobial infection, not only in root epidermal cells but also during nodule

development (Bersoult et al. 2005; Limpens et al. 2005). Application of NF

stimulated biomass accumulation and changes in plant structure and morphology

support a view of NFs as “hormone‐like” molecules (Souleimanov et al. 2002). It is

becoming increasingly apparent that the genes necessary for nitrogen fixation in
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many diazotrophs have common structures and functions. However, the

mechanisms by which cellular nitrogen levels are sensed and nitrogen signals are

transmitted can vary considerably among different nitrogen-fixing bacteria. From

the biodiversity studies of NFs, it appears that their structures belong with the

phylogenetic evolution of plants, rather than that of bacteria, suggesting a coevolu-

tion of symbiotic bacteria with their host plant (Promé 1999).

Some preliminary and indirect observations indicate that similar molecules seem

to exist in nonlegume plants. Since no true nodule formation has been demonstrated

in nonlegumes like rice, still, some morphological responses to rhizobial inocula-

tion have been documented in rice. Rhizobium-produced plant hormones can favor

the growth of short and thick roots (Reddy et al. 1997), and root hair deformation, a

process associated with early bacterial infection, has also been demonstrated

(Reddy et al. 2000). Interestingly, rice appears capable of perceiving NFs coded

for bacterial nod genes, and several homologues to legume early nodulin genes

(ENODs) are present in rice (Reddy et al. 1999). Similarly, the NF elicited positive

effects on corn, another non‐host species, increasing the total length (Souleimanov

et al. 2002). This suggests that the perception of NF might be conserved among a

wide variety of plants. Moreover, the promoter activity of rice ENOD40 in soybean
revealed that its tissue-specific expression was identical to that of the endogenous

soybean promoter, indicating that key regulatory features of these genes may be

conserved in rice (Reddy et al. 2000). A partial explanation for this may lie in the

fact that rice possesses the capacity to form symbiotic associations with under-

ground fungi (mycorrhizae) and that there appear to be substantial similarities at the

genetic level between the formation of such mycorrhizal associations and the

formation of symbioses with diazotrophs (Hirsch and Kapulnik 1998). The Rhizo-
bium sp. NF signals show strong resemblance to lipochitooligosaccharides pro-

duced by mycorrhizal fungi (Maillet et al. 2011). The NF-signaling cascade has

been genetically dissected (reviewed by Kouchi et al. 2010). These studies showed

that several signaling components have been recruited from the network that is also

essential for endomycorrhizal symbiosis. Genes that are essential for NF-induced

signaling of mycorrhiza as well as Rhizobium sp. form a common symbiotic

signaling pathway. Nod factor signaling also requires several transcription factors.

Legume GRAS (GAI, RGA, SCR)-type transcription factors nodulation signaling

pathway1 (NSP1) and NSP2 are essential for Rhizobium Nod factor-induced nodu-

lation (Kaló et al. 2005; Smit et al. 2005; Heckmann et al. 2006; Murakami et al.

2006). Although both transcription factors are not essential for mycorrhizal symbi-

osis, it was recently found that an NSP2-dependent signaling pathway facilitates

mycorrhizal root colonization (Maillet et al. 2011). However, legume NSP1 and

NSP2 can be functionally replaced by nonlegume orthologs, including rice NSP1

and NSP2, indicating that both proteins are functionally conserved in higher plants.

NSP1 and NSP2 are indispensable for strigolactone (SL) biosynthesis in the legume

Medicago truncatula and in rice (Liu et al. 2011).

Recently, using novel inoculation conditions with very low numbers of bacteria,

the cells of root meristems of maize, rice, wheat, and other major nonlegume crops,

such as oilseed rape and tomato, can be intracellularly colonized by the
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non-rhizobial, non-nodulating, nitrogen-fixing bacterium Gluconacetobacter
diazotrophicus that naturally occurs in sugarcane (Cocking et al. 2005). A success-

ful nitrogen-fixing symbiosis requires the accommodation of rhizobial bacteria as

new organelle-like structures, called symbiosomes, inside the cells of their legume

hosts (Ovchinnikova et al. 2011). G. diazotrophicus expressing nitrogen-fixing (nif
H) genes was found in symbiosome-like compartments in the cytoplasm of cells of

the root meristems of cereals and nonlegume crop species, somewhat similar to the

intracellular symbiosome colonization of legume nodule cells by rhizobia (Cocking

et al. 2005).

5.5.2 Molecular Nitrogen Fixation and Nitrogenase Function

During biological nitrogen fixation (BNF), molecular nitrogen is reduced in multi-

ple electron transfer reactions, resulting in the synthesis of ammonia and the release

of hydrogen (Kim and Rees 1992). Ammonium is then used for the subsequent

synthesis of biomolecules. This reduction of molecular nitrogen to ammonium is

catalyzed in all nitrogen-fixing organisms via the nitrogenase enzyme complex.

Nitrogenase catalyzes the conversion of N2 to NH4
+, as represented by the follow-

ing equation:

N2 þ 10Hþ þ 8e� þ nMgATP ! 2NHþ
4 þ H2 þ nMgADPþ NPi ðn � 16Þ

This reaction shows that nitrogen fixation is very expensive in biological energy

equivalents, requiring large amounts of both reducing power and high-energy

phosphate (ATP). Obligate proton reduction occurs during nitrogenase catalysis,

with a minimum of 1 mol of H2 produced per mol of N2 reduced (Simpson and

Burris 1984). The proportion of electrons allocated to proton reduction increases

under conditions of limiting electron flux, further increasing the consumption of

MgATP (Burgess and Lowe 1996). Thus nitrogen-fixing microorganisms tightly

control both the synthesis and activity of nitrogenase to avoid the unnecessary

consumption of energy (Schmitz et al. 2002). In addition to protons, nitrogenase

can reduce several other alternative substrates, which resemble N2 on the basis of

double or triple bonds in their structures. Acetylene has proven to be a particularly

useful substrate in nitrogenase research because the reduction product, ethylene, is

easily quantified by gas chromatography. Because acetylene and ethylene are both

permeable to the bacterial envelope, nitrogenase activity may be measured in vivo

as well as in vitro by the acetylene reduction assay method. Reduction of all

substrates, except protons, can also be inhibited by CO, suggesting that proton

reduction occurs by a slightly different pathway (Burgess and Lowe 1996).

The nitrogenase complex is comprised of two main functional subunits

(Hageman and Burris 1978). The smaller dimeric component, known as the iron

(Fe) protein, functions as an ATP-dependent electron donor to the larger
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heterotetrameric component, known as the molybdenum–iron (MoFe) protein,

which contains the enzyme catalytic site. The structural components of these

subunits are the Nif (nitrogen fixation) proteins NifH (γ2 homodimeric

azoferredoxin) and NifD/K (α2β2 heterotetrameric molybdoferredoxin). Basically

three types of nitrogenases are known based on the composition of their metal

centers: iron and molybdenum (Fe/Mo), iron and vanadium (Fe/V), or iron only

(Fe) (Bishop and Premakumar 1992). The most common form is the Fe/Mo type

highly conserved in sequence and structure throughout nitrogen-fixing bacteria

(Schrock 2006). Under conditions of molybdenum depletion, some organisms—

for example, Azotobacter vinelandii and Rhodobacter capsulatus—induce the

synthesis of alternative nitrogenases containing vanadium–iron or iron–iron

cofactors (Eady 1996).

Each Fe protein dimer can bind two nucleotide molecules, at sites distal from the

redox-active center [Fe4S4] directly involved with electron transfer to MoFe protein

active site (Burgess and Lowe 1996). Binding of MgATP at these sites causes a

conformational change in Fe protein. The two subunits (α and β) rotate toward each
other, extruding the [Fe4S4] cluster toward the protein surface (and surmised

interaction with the P-clusters of MoFe protein) by 4 Å (Schindelin et al. 1997).

This conformational change is thought to be a key step in the catalytic cycle of

nitrogenase. Although there is little apparent variation in the sequences and

structures of nitrogenases, there appear to be almost as many nitrogenase-regulating

schemes as there are nitrogen-fixing species (Halbleib and Ludden 2000).

5.5.3 Transcriptional Regulation of Nitrogen Fixation

Nitrogen-fixing microorganisms colonize a wide variety of habitats and can be found

free-living in soils and water, in association with grasses, or in root–nodule symbioses

with legumes. Consequently, they have evolved sophisticated regulatory networks

that respond to multiple environmental cues (Dixon and Kahn 2004). Biological

nitrogen fixation is highly controlled at the transcriptional and posttranscriptional

level by regulatory networks that respond to the availability of fixed nitrogen.

Regulation of the nitrogen fixation gene (nif) expression has been most extensively

studied in diazotrophic proteobacteria (Arcondeguy et al. 2001). In all diazotrophic

proteobacteria examined, the σ54-dependent transcriptional activator NifA is

required for expression of all the nitrogen-fixing (nif) genes (Schmitz et al. 2002).

NifA expression and activity is regulated in response to the environmental signals of

molecular oxygen and combined nitrogen. Because the nitrogenase components are

oxygen labile, it is advantageous for bacteria to repress transcription when oxygen

levels are high (Halbleib and Ludden 2000). The nifA gene is cotranscribed with nifL,
which encodes a redox- and nitrogen-responsive regulatory flavoprotein (NifL). NifL

acts as a negative regulator of NifA, effectively adding another level of regulation in

response to oxygen and fixed nitrogen (Halbleib and Ludden 2000). Indeed, NifA and

NifL form an atypical two-component sensor–regulator system, and NifL modulates
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the activity of NifA by direct protein–protein interaction (Martı́nez-Argudo et al.

2004). NifA proteins are structurally similar to each other. This enabled the descrip-

tion of NifA as a multidomain protein (Studholme and Dixon 2003 and references

therein). Different regulatory mechanisms at the transcriptional level have been

documented in several diazotrophs, such as in the α-Proteobacteria Azospirillum
brasilense, which lacks NifL (Arsene et al. 1996), suggesting that nitrogenase

transcriptional control mechanisms must be elucidated separately for any given

diazotroph (Halbleib and Ludden 2000).

Because of the metabolically demanding nature of nitrogen fixation, an addi-

tional layer of nitrogenase regulation is present in a few free-living diazotrophs.

To prevent unproductive nitrogen fixation during energy-limiting or nitrogen-

sufficient conditions, the nitrogenase complex is rapidly, reversibly inactivated by

ADP-ribosylation of Fe protein. The ADP-ribosylation of Fe protein is carried out

by NAD1-dependent enzyme, or NADH dinitrogenase reductase ADP-

ribosyltransferase (DraT) and dinitrogenase reductase glycohydrolase (DraG)

(Ludden and Roberts 1989). DraT/DraG-mediated posttranslational regulation of

the nitrogenase Fe protein by ADP-ribosylation has been previously described for a

few diazotrophic bacteria belonging to the class α-proteobacteria. However,

recently Oetjen and Reinhold-Hurek (2009) for the first time presented the DraT/

DraG system of a β-proteobacterium, Azoarcus sp. strain BH72, a diazotrophic

grass endophyte. This suggests that the DraT/DraG system might be operating in a

wider range of proteobacterial diazotrophs than previously suspected, albeit with

some functional distinctions. The availability of diazotrophic genome data will

provide more insights into the gene regulatory network and the underlying molecu-

lar mechanisms of nitrogen fixation and contribute to our understanding of the

evolution of nitrogen-fixing bacteria.

5.5.4 Transgenic Rice Harboring Putative Nitrogen-Fixing
Gene

There has been much interest in exploring the feasibility of transferring symbiotic

nitrogen fixation capability to important cereals such as rice. Engineering of NF gene

in rice genome to enter into nitrogen-fixing symbiosis with rhizobia akin to that in

legumes is still a big challenge to the scientists. Rice is shown to harbor at least partial

genetic makeup in its genome for interacting with rhizobia (Reddy et al. 2000, 2002).

However, rice varieties have a very low capacity to induce nod genes in rhizobia,

presumably because of a lack of ability to synthesize nod gene-inducing flavonoids

(Reddy et al. 2000; Rolfe et al. 2000). Hence, isoflavone production may pave the

way for rice plants to enter into a symbiotic relationship with rhizobia. The key

enzyme that redirects phenylpropanoid pathway intermediates from flavonoids to

isoflavonoids is the isoflavone synthase (IFS) (Jung et al. 2000). In an effort to

develop a rice variety possessing the ability to induce nodulation (nod) genes in

rhizobia, Sreevidya et al. (2006) incorporated the IFS gene from soybean into rice
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(Oryza sativa L. cv. Murasaki R86) under the control of the 35S promoter. The

presence of IFS gene in transgenic rice led to the expression of isoflavone synthase

conferring rice plants with the ability to produce flavonoids that were able to induce

nod gene expression, albeit to varied degrees. These results suggest that the isofla-

vone synthase enzyme is functionally active in rice. Incorporation of nif genes
essential to nitrogenase activity into the rice genome and limiting nif expression to

root plastids have been suggested to be one of the most suitable approaches (Britto

and Kronzucker 2004). This is because plastidic genetics most closely resembles that

of N-fixing prokaryotes (Whitfeld and Bottomley 1983), and the root plastids do not

contain photosynthetically produced oxygen (Britto and Kronzucker 2004). Another

approach might be the expression of the oxygen-tolerant nitrogenase in rice found in

the bacterium Streptomyces thermoautotrophicus (Ribbe et al. 1997). Although these
approaches are, in principle, realizable, it will likely require huge intensive research

before a useful product makes it to the field trial stage. At present, optimizing

associations between rice and naturally colonizing endophytic bacteria to enhance

rice nitrogen status may be more promising.

5.6 Conclusion and Future Perspective

Nitrogen is an essential nutrient element for plant growth and development. How-

ever, it is unavailable in its most prevalent form as atmospheric nitrogen which is

estimated to be more than 30,000 tons ha�1. Crop production instead commonly

depends upon industrially produced nitrogen fertilizers (more than 100 million tons

annually), and overuse of these chemicals has led to worldwide ecological

problems. Global efforts to address N-related environmental hazards and ecological

impacts in an integrated manner are currently in progress. These increasing efforts

have led to the development of innovative research areas related to utilization of

atmospheric nitrogen by high N input crops including rice and banana. The use of

associative and endophytic diazotrophic bacteria for increasing N nutrition in these

nonlegumes has been a long-standing goal. Reviews of recent advances indicate

that several species of associative and endophytic diazotrophs such as Acetobacter,
Azoarcus, Azospirillum, Bacillus, Burkholderia, Herbaspirillum, Klebsiella, Rhizo-
bium, and Pseudomonas are able to form close associations with these plants and

can fix appreciable amounts of nitrogen within the rhizosphere of the host plants.

This symbiotic association exerts beneficial effects on root–shoot growth, nutrient

uptake, dry matter yield, fruit quality, and other traits of crops. Better understanding

on underlying molecular mechanism of N nutrition of plants by the help of

diazotrophic bacteria and molecular tools for incorporating N2 fixing gene into

plant or the associated bacterium is needed for development of sustainable technol-

ogy for agriculture alternative to synthetic fertilizers. Another approach that has

received less attention because of their current inefficiency in nitrogen yields is the

engineering of free-living microbes that fix nitrogen. The implementation of any of

these nitrogen technologies will depend on our knowledge base of biological
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nitrogen fixation. Recent advances in understanding nitrogen fixation biology

indicate that application of genetic engineering tools for enhancement of nitrogen

fixation may be less difficult than originally thought. A technology that economi-

cally eliminates or lessens the need for commercial nitrogen fertilizer could be

invaluable both in developed and developing countries.
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Chapter 6

Potential of Rhizobia in Productivity

Enhancement ofMacrotyloma uniflorum L. and

Phaseolus vulgaris L. Cultivated in the Western

Himalaya

Dinesh K. Maheshwari, Mohit Agarwal, Shrivardhan Dheeman,

and Meenu Saraf

6.1 Introduction

High altitude regions like the mighty Himalayas are prone to freezing and desicca-

tion and characterized by dramatic seasonal change in physical, chemical and

biological consistency including property of soil. Less crop production is foreseen

in hilly or mountain area due to freezing and desiccation including soil texture

incompatibility due to rocks and stones. In high altitude regions farmers are

interested to produce high crop yield using fertilizers in fields. Intensive agricultural

practices, rapid industrialization and an increase imbalance uses of nutrient supply

leads to decline in soil productivity and soil degradation. Soil a habitat and

substratum for plants with nutritional source of them affect the health and growth

of plant as well as the productivity of crop planted.

In the Himalayan climatic condition where temperature are crucial determinant

for microbial growth as well as the growth of plant, their health and productivity

cold-tolerant rhizospheric microflora can be used to induce for crop enhancement of

legume in the western Himalaya. These are characterized to retain their activity in

suboptimal temperature conditions. Psychrotolerant rhizobia which can grow over a

wide temperature range from 4 to 42 �C and usually grow optimally at temperature

above 20 �C, are extremely important, since they have survive and retain their

functionality in low-temperature area such as Himalaya mountain ranges in India.
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Crop plants of commercial importance that are severally restricted by a variety of

environmental factors, including drought, salinity, and low temperature, have a

great significant effect in reducing agricultural productivity around the world. In

addition, natural distribution of plants species is determined by their ability to

survive freezing events. In higher altitude, especially in the western Himalaya,

low temperature is one of the major determinants for crop productivity, whereas in

some plant species from temperate climates, winter survival is greatly influenced by

the plant’s cold acclimatization ability.

The concept of crop productivity emerges with the concurrent development of

major scientific pathway involved green revolution during 1960s. From the begin-

ning of period until today, the crop productivity is a major issue of Indian agricul-

tural economy. Our food demand remains parallel to the population increase;

accordingly, the same pattern is expected; and by the end of 2020, population

will be ~2 billion (approximately). To eradicate the challenges food requirements of

the burgeoning population and plateauing productivity of agricultural lands can

only be met by a second green revolution or ever green revolution. Declining crop

productivity mainly results due to unsuitable agricultural practices and galloping

rate of population. Pertaining to massive population pressure, increase in food grain

production is an uphill task in today’s world. Thus, introduction of evergreen

revolution proved to be an advantageous task in achieving higher productivity.

Lessons drawn from the green revolution lead to productivity enhancement, con-

servation and improvement of soil, availability of water, biodiversity, atmosphere,

renewable energy sources, etc. A system of agriculture evolved that involves

sustainable management of natural resources and progressive enhancement of soil

quality, biodiversity, and productivity.

Legumes seeds are widely recognized as an important source of food and feed

proteins (Duranti and Guis 1997) and have become very important in human

nutrition and as a feed for domestic animals (Egli 1998; Cummings et al. 2001).

Additionally, the increasing interest in low-input sustainable agriculture systems on

cropping farms from an economic, managerial, and environmental standpoint opens

the door for continued interest in grain legumes (White 1989). The importance of

legumes to these systems is not only for their nitrogen (N)-fixing capabilities but

also their ability in breaking the cycles of diseases and pests affecting the other

crops (White 1989; Cummings et al. 2001).

In the past few decades, field and greenhouse inoculation studies with plant

growth-promoting rhizobacteria (PGPR) have shown that these microorganisms are

able to enhance yield of agriculturally important crops grown under climatic

conditions and different soils (Okon and Labandera-Gonzalez 1994). During last

decades different genera involved in plant growth promotion have been widely

applied and now well established and used commercially worldwide for sustainable

agriculture, silviculture, horticulture, and environmental remediation (Kloepper

et al. 1989; Jeffries et al. 2003; Reed and Glick 2005; Fravel 2005; Aeron et al.
2011). Involvement of different PGPR-mediated positive factors such as

indoleacetic acid (Park et al. 2005; Mordukhova et al. 1991; Gupta et al. 1999;

Kumar et al. 2005), gibberellic acid (Mahmoud et al. 1984), and cytokinins (Tien
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et al. 1979; Garcia de Salamone et al. 2001) impart significant effects on different

crops. Growth regulators like IAA and cytokinin producing PGPR observed in

growth promotion of various agricultural crops, i.e., Sesamum indicum L., Trifolium
repens, Arachis hypogea L., Cajanus cajan, Trigonella foenum, Mucuna pruriens,
Pinus roxburghii, Mimosa pudica, Meloidogyne incognita, etc. (Noel et al. 1996;
Hirsch et al. 1997; Kumar et al. 2005).

PGPR competitively colonize plant root, stimulate plant growth, and reduce

plant disease (Kloepper and Schorth 1978). Genetic improvement of PGPR

enhances plant by colonizing in rhizosphere and enhancing effectiveness of PGP

attributes parallel. It might be due to one or more associated trait associated in plant

growth promotion (Bloemberg and Lugtenberg 2001; Glick et al. 1995).

PGPR are most commonly used in agriculture, and their application in various

crops resulted in an average increase (~ 20–40 %) in yield across multiple crops all

over the world when various reports were combined over last decade. In general,

PGPR carried plant growth benefit owing to the increase in pre-emergence of

seedling, seed germination rates, root growth, leaf area, chlorophyll, proteins, and

hydraulic activity, fluid movement within the plant besides tolerance to drought,

low temperature, delayed leaf senescence, disease resistance, and finally enhanced

grain size and crop yield.

Fabaceae which is the second largest family of flowering plant comprises of about

750 genera and more than 18,000 species, and among them, only 15–20 % have been

explored for rhizobial diversity. Legume of economic importance is grown in India

under various agroclimatic conditions, and the presence of native rhizobia has,

therefore, been anticipated. In order to tap the vast diversity of rhizobia in the country,

it is important to screen legumes that are wild or are found in rare habitats.

Besides pulses (chief agricultural legumes), there are certain important medici-

nal plants beneficial to mankind. Some are of the wild and native species of the sub-

Himalayan region of Uttarakhand. These species are used in traditional and folk

system of medicines since Vedic ages. A few of these plant of the family

Leguminosae are Abrus precatorius L. (Ratti), Acacia concinna L. (Shikakai),

Acacia catechu L. (Kattha), Acacia nilotica L., Astragalus condolleanus L.,

(Rudravanti), Canavalia ensiformis L. (Jack bean), Canavalia gladiate L. (Sword

bean), Clitoria ternatea L. (Aprajita), Crotalaria juncea L. (Sunn-hemp),

Dalbergia sissoo L. (Sheesham), Glycine max L. (Barg var.) (Bhatt), Glycyrrhiza
Glabra L. (Mulethi), Macrotyloma Uniflorum L. (Gahat), Melilotus officinalis L.,
Mimosa hamata L., Mimosa himalayensis L., Mimosa pudica L. (Lajwanti),

Mucuna pruriens L. (Kaunch), Phaseolus vulgaris L. (Cheema), Prosopis spicigera
L. (Shami), Psoralea corylifolia L. (Bagchi), Sesbania rostrata L., Sesbania sesban
L. (Dhaincha), Tamarindus indica L. (Imli), Tephrosia purpurea L., Trigonella
foenum-graecum L. (Methi), Vicia angustifolia L., etc.
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6.2 PGPR in Crop Production

The bacteria useful to plants are characterized in two general types: bacteria

forming a symbiotic relationship with the plant and another the free-living ones

found in the soil but comprise near or even within (inside) the plant tissues

(Kloepper et al. 1988; Frommel et al. 1991). Beneficial free-living soil bacteria

that enhance plant growth are usually referred to as “plant growth promoting

rhizobacteria” (Kloepper and Schorth 1978) or yield-increasing bacteria (YIB)

(Paio et al. 1992; Tang 1994). PGPR originally defined (Kloepper and Schorth

1978) as root-colonizing bacteria (rhizobacteria) that cause either growth promo-

tion or biological control of plant diseases. The mechanisms of plant growth

promoting by nonpathogenic, plant-associated bacteria have not been completely

elucidated but are important mechanisms are categorized into the direct and indirect

plant growth-promoting mechanisms (Glick et al. 1995). The direct plant growth-

promoting (PGP) mechanisms include solubilization of minerals such as phospho-

rus (Malboobi et al. 2009), production of siderophore that solubilize and sequester

iron (Kloepper et al. 1980), or production of plant growth regulators (hormones)

that induce growth and yield of plants (Mordukhova et al. 1991; Glick 1995; Gupta
et al. 1999; Garcia et al. 2001; Ma et al. 2002) and enhance plant growth at various

stages of development, whereas indirect plant growth promotion occurs when

PGPR promote plant growth by improving growth-restricting conditions by secret-

ing antagonistic substances or indirectly by inducing systemic resistance to

pathogens (Glick et al. 1995, 1999). In PGPR, a broad range of metabolites such

as cyanogens mainly hydrogen cyanide (HCN) (Flaishman et al. 1996), antibiotics
(Shanahan et al. 1992; Haas and Defago 2005), lytic enzymes (Chitinase, β-1, 3-
glucanase, protease) (Lim et al. 1991; Renwick et al. 1991; Arora et al. 2001), and
toxins have been reported (Fig. 6.1).

The PGPR are defined by three intrinsic characteristics: (1) They must be able to

colonize the root; (2) they must survive and multiply in the microhabitats associated

with the root surface, in competition in other microbiota, at least for the time needed

to expressed their plant promotion/protection activities; and (3) they must promote

the plant growth (Barea et al. 2005). The PGPR known to participate in many

important ecosystem processes were first used for agriculture purposes in the

former Soviet Union and India and are now being tested worldwide (Lucy et al.
2004). These rhizospheric beneficial bacteria enhance plant growth and control the

phytopathogens by indirect and indirect mean, but the specific mechanism by which

PGPB promote plant growth is not fully understood (Glick 1995; Ahmad et al.
2008). These bacteria can improve plant development by nitrogen fixation;

phytohormones and siderophore production; solubilization of phosphorus, zinc,

and potassium; elevation of the stress by secreting the ACC deaminase enzyme;

and disease control by suppressing or killing of phytopathogens.

PGPR can be divided in to two groups according to their relationship with the

plant: symbiotic bacteria and free-living rhizobacteria (Khan 2005). Agricultural

manipulation of symbiotic and free-living PGPR has become a significant
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component of modern agricultural practice in many countries (Bashan and Holguin

1998). For this purpose, the most successful plant-bacteria relationships have been

those involving symbiotic rhizobia and free-living, non-leguminous bacteria such

as Azospirillum, Azotobacter, Bacillus, Enterobacter, and Pseudomonas
(Dobereiner and Pedroza 1987). On the other hand, PGPR includes various genera,

namely, Achromobacter, Acidovorax, Acetobacter, Acinetobacter, Azoarcus,
Azomonas, Azospirillum, Actinoplanes, Agrobacterium (Rhizobium radiobacter),
Alcaligenes, Arthrobacter, Azotobacter, Azorhizobium, Bacillus, Beijerinckia,
Bradyrhizobium, Burkholderia, Cellulomonas, Chryseobacterium, Delftia,
Enterobacter, Erwinia, Flavobacterium, Gluconacetobacter, Herbaspirillum,
Klebsiella, Ochrobacterium, Mesorhizobium, Methylobacterium, Methylovorus,
Micromonospora, Paenibacillus, Pantoea, Pseudomonas, Rhodococcus, Rhizo-
bium, Serratia, Stenotrophomonas, Streptomyces, Sinorhizobium, Variovorax, and
Xanthomonas.

6.3 Rhizobia

Symbiotic nitrogen-fixing, Gram-negative bacteria having caliber to invade roots of

leguminous plants are referred to as rhizobia. The rhizosphere is the region where

rhizobia are heavily populated, and it makes a first line of defense of plant

pathogenic fungi attack (Weller 1988). Most important of rhizobia in crop

Fig. 6.1 Plant growth-promoting activities of PGPR
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productivity is that it induces the formation of plant membrane structure called

nodules by infecting host plant. These nodules have significant role in nitrogen

fixation into a useful symbiosis with legume plants; this process is called BNF

(bacterial nitrogen fixation).

Rhizobia are able to fix N2 in the symbiotic and free-living relationship with host

plant. Rhizobia can combine nitrogen gas from air to nitrogenous compound that

plant can utilize as a direct nitrogen source. Rhizobia are the best-known plant

symbiotic bacteria and have importance in atmospheric nitrogen fixation, which

enhance the plant growth promotion and biomass yield. Currently, rhizobia have

been established both as bio-fertilizers and biopesticides. Rhizobia do not form

endospores and bear a single polar flagellum or two to six peritrichous flagella.

Uneven Gram staining is frequently encountered with rhizobia, depending on the

age of the culture. Cell from a young culture and bacteroids usually show even

Gram staining, while older and longer cells give a banded appearance with

unstained area. These unstained areas have been identified to be large granules of

polymeric beta-hydroxybutyric acid (PHBA). Rhizobia are predominantly aerobic

chemoorganotrophs and are relatively easy to culture. They grow well in the

presence of oxygen and utilize relatively simple carbohydrates and amino

compounds. Rhizobia are facultative symbionts that can live either as member of

the natural soil microbial community or symbiotically in root nodules of the host

legumes.

6.4 Taxonomy

Continuous evolving taxonomy of rhizobia parallel to the evolvement of molecular

biology and polyphasic approach that leads regular increases in the number of root-

nodulating symbiotic microorganisms. Mystery factors behind this phenomenon are

symbiotic genes which may be responsible for the cluster or disperse through

conjugation with high frequency on the plasmid as well as chromosomes.

A taxonomy given will help to explore current status of rhizobia. Rhizobia belong to

α- and β-proteobacteria and consist of 95 species which are distributed in 13 genera,

namely, Azorhizobium, Bradyrhizobium, Burkholderia, Cupriavidus, Devosia, Ensifer,
Herbaspirillum,Mesorhizobium,Methylobacterium,Ochrobacterium,Phyllobacterium,
Shinella, and Rhizobium (Table 6.1).

6.5 Rhizobia in Crop Productivity

In the rhizospheric vicinity, Rhizobia are recognized as predominating

microorganisms to induce plant crop growth in symbiotic relation, where rhizobia

induce root nodulation in plant and fix nitrogen content for plant growth and health;

on the other hand, plants provide microhabitat for rhizobia. Common bean is a
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Table 6.1 Current taxonomy of Rhizobia and related species (www.rhizobia.co.nz/taxonomy/

rhizobia.html)

Genera Species Hosts name References

Rhizobium
(30 spp.)

R. alamii Medicago ruthenica Berge et al. (2009)

R. alkalisoli Caragna intermedia Lu et al. (2009b)

R. cellulosilyticum Sawdust of Populus
alba (nodulates)

Garcia-Fraile et al. (2007)

R. daejeonense Cyanide treatment
bioreactor

Quan et al. (2005)

R. endophyticum Phaseolus vulgaris Lopez-Lopez et al. (2010)

R. etli Phaseolus vulgaris Segovia et al. (1993)

R. faba Vicia faba Tian et al. (2008)

R. galegae Galega orientalis Lindstrom (1988)

R. gallicum Phaseolus vulgaris Amarger et al. (1997)

R. giardinii Phaseolus vulgaris Amarger et al. (1997)

R. hainanense Desmodium
sinuatum

Chen et al. (1997)

R. herbae Ren et al. (2011a)

R. huautlense Sesbania herbacea Wang et al. (1998)

R. indigoferae Indigofera spp. Wei et al. (2002)

R. leguminosarum Pisum sativum Frank (1889)

R. loessense (R.
huanglingense)

Astragalus
complanatus

Wei et al. (2003)

Astragalus
scobwerrimus

Astragalus
chrysopterus

R. lusitanum Phaseolus vulgaris Valverde et al. (2006)

Macroptilium
atropurpureum

Leucaena
leucocephala

R. mesosinicum Albizia sp. Lin et al. (2009)

R. miluonense Kummerowia sp. Gu et al. (2008)

Dalbergia sp.

Lespedeza chinensis

R. mongolense Medicago ruthenica Van Berkum et al. (1998)

R. multihospitium Multiple legume
species

Han et al. (2008b)

R. oryzae Oryza alta Peng et al. (2008)

R. phaseoli Phaseolus vulgaris Ramirez-Bahena et al.

(2008)

R. pisi Pisum sativum Ramirez-Bahena et al.

(2008)

R. sullae (R. hedysari) Hedysarum
coronarium

Squartini et al. (2002)

R. tropici Phaseolus vulgaris Martinez-Romero et al.

(1991)

R. tubonense Oxytropis glabra Zhang et al. (2011)

(continued)
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Table 6.1 (continued)

Genera Species Hosts name References

R. undicola
(Allorhizobium
undicola)

Neptunia natans De Lajudie et al. (1998)

R. vignae Ren et al. (2011b)

R. yanglingense Gueldenstaedita
multiflora

Tan et al. (2001)

Amphicarpaea
trisperma,
Coronilla varia

Mesorhizobium
(21 spp.)

M. albiziae Albizia kalkora Wang et al. (2007)

M. alhagi Chen et al. (2009)

M. amorphae Amorpha fructose Wang et al. (1999b)

M. australicum Biserrula pelecinus Nandasena et al. (2009)

M. camelthorni Chen et al. (2011)

M. caraganae Caragana spp. Guan et al. (2008)

M. chacoense Prosopis alba Velazquez et al. (2001)

M. ciceri
(Rhizobium ciceri)

Cicer arietinum Nour et al. (1994)

M. gobiense Wild desert legumes Han et al. (2008a)

M. huakuii (Rhizobium
huakii)

Astragalus sinicus Jarvis et al. (1997)

M. loti
(Rhizobium loti)

Lotus corniculatus Jarvis et al. (1982, 1997),

Nour et al. (1995)

M. mediterraneum
(Rhizobium
mediterraneum)

Cicer arietinum Nour et al. (1995)

Jarvis et al. (1997)

M. metallidurans Vidal et al. (2009)

M. opportunistum Nandasena et al. (2009)

M. plurifarium Acacia senegal

M. robiniae Zhou et al. (2010)

M. shangrilense Lu et al. (2009a)

M. septentrionale Astragalus
adsurgens

M. tarimense Wild desert legumes Han et al. (2008a)

M. temperatum Astragalus
adsurgens

M. tianshanense
(Rhizobium
tianshanense)

Glycyrrhiza
pallidiflora

Jarvis et al. (1997)

Ensifer (formerly
Sinorhizobium)
(17 spp.)

E. abri Abrus precatorius Ogasawara et al. (2003)

E. americanum Abrus acatlensis Toledo et al. (2004)

E. arboris Prosopis chilensis Nick et al. (1999)

E. fredii
(Rhizobium fredii)

Glycine soja Chen et al. (1988)

E. garamanticus Merabet et al. (2010)

E. indiaensis Sesbania sesban Ogasawara et al. (2003)

E. kostiense Acacia senegal Nick et al. (1999)

(continued)
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Table 6.1 (continued)

Genera Species Hosts name References

E. kummerowiae Kummerowia
stipulacea

Wei et al. (2002)

E. medicae Medicago spp. Rome et al. (1996)

E. meliloti (Rhizobium
meliloti)

Medicago sativa de Lajudie et al. (1994)

E. mexicanus Acacia angustissima
(Mill.) Kuntze

Lloret et al. (2007)

E. morelense
(Ensifer adhaerens)

Leucaena
leucocephala

Martens et al. (2007)

E. numidicus Merabet et al. (2010)

E. saheli Sesbania cannabina de Lajudie et al. (1994)

E. sojae Glycine max Li et al. (2011)

E. terangae Acacia laeta de Lajudie et al. (1994)

Bradyrhizobium
(8 spp.)

B. canariense

B. denitrificans

B. elkanii Glycine max Kuykendall et al. (1992)

B. iriomotense Entada koshunensis Islam et al. (2008)

B. japonicum (Rhizobium
japonicum)

Leguminous plants Jordan (1982)

B. jicamae Pachyrhizus erosus Ramı́rez-Bahena et al.

(2009)

B. liaoningense Glycine max,
Glycine soja

B. pachyrhizi Pachyrhizus erosus Ramı́rez-Bahena et al.

(2009)

B. yuanmingense Lespedeza Yao et al. (2002)

Azorhizobium
(02 spp.)

A. caulinodans Sesbania rostrata Dreyfus et al. (1988)

A. doebereinerae
(Azorhizobium
johannae)

Sesbania virgata
(Caz.) Pers

Methylobacterium
(01 spp.)

M. nodulans Crotalaria
podocarpa

Jourand et al. (2004)

Burkholderia (07

spp.)

B. caribensis Tropical mimosoid
woody legumes

Vandamme et al. (2000)

B. cepacia Tropical mimosoid
woody legumes

Vandamme et al. (2002,

2007)

B. mimosarum Mimosa spp. Chen et al. (2006)

B. nodosa Mimosa
bimucronata

Chen et al. (2007)

Mimosa scabrella

B. phymatum Tropical mimosoid
woody legumes

Vandamme et al. (2000)

B. sabiae Mimosa
caesalpiniifolia

Chen et al. (2008)

B. tuberum Tropical mimosoid
woody legumes

Vandamme et al. (2000),

Moulin et al. (2001)

(continued)
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promiscuous host plant since the capability of nodulate P. vulgaris effectively is

present in a genetically heterogeneous group of bacteria originating from all over

the world (Laguerre et al. 1993). Historically, P. vulgaris was the first legume in

which Rhizobium symbiosis was identified (Taylor et al. 1983), and the original

microsymbiont of P. vulgaris is Rhizobium etli (Segovia et al. 1993). Root-

nodulating bacteria are of extreme importance in legumes. They provide them

with the advantageous factor in relation to nitrogen fixation besides other’s such as

scavenging of phytopathogens. Several workers reported different species of

rhizobia nodulate P. vulgaris such as R. etli (D’Haeze et al. 2007), R. gallicum
(Shamseldin et al. 2005), R. giardinii bv. giardinii (Mhamdi et al. 2002), R.
leguminosarum (Mhamdi et al. 2002; Garcia-Fraile et al. 2010), R. tropici
(Gressent et al. 2002), and E. meliloti bv. mediterranense (Zurdo-Piñeiro et al.

2009).

Rhizobia strains were able to increase seed yield enhancement by various PGP

mechanism invariable climatic and soil conditions (Epping et al. 1994; Mostasso

et al. 2002; Asadi et al. 2005; Mnasri et al. 2007a; Gutierrez and Barraquio

2010). Rhizobia strains are able to increase seed yield, pods per plant, seeds per

pod, weight of seed per plant, seed protein yield, total dry matter, etc. (Deshwal

et al. 2003a; Mazen et al. 2008). Khalequzzaman and Hossain (2008) reported

maximum yield reduction of foot rot disease by S. sclerotium in bean on

application of rhizobia. The effect of rhizobia on the growth and nutrition uptake

of various crop plants has been discussed by Kloepper et al. (2007), and Glick

et al. (2007).
The major concern of rhizobia is maximum yield production utilizing its

essential PGP attributes for major leguminous crop of the Himalayan diversity,

Table 6.1 (continued)

Genera Species Hosts name References

Cupriavidus (01
spp.)

C. taiwanensis Mimosa pudica Chen et al. (2001)

Mimosa diplotricha Chen et al. (2003)

Devosia (01 spp.) D. neptuniae Neptunia natans Rivas et al. (2003)

Herbaspirillum
(01 spp.)

H. lusitanum Phaseolus vulgaris Valverde et al. (2003)

Ochrobacterium
(02 spp.)

O. cytisi Cytisus scoparius Zurdo-Piñeiro et al.

(2007)

O. lupine Lupinus albus Trujillo et al. (2005)

Phyllobacterium
(03 spp.)

P. trifoli Trifolium pratense Valverde et al. (2003)

P. ifriqiyense Lathyrus numidicus Mantelin et al. (2006)

Astragalus
algerianus

P. leguminum Astragalus
algerianus

Mantelin et al. (2006)

Argyrolobium
uniflorum

Shinella (01 spp.) S. kummerowia Kummerowia
stipulacea

Lin et al. (2008)
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namely, M. uniflorum and P. vulgaris. Similarly, Rhizobium leguminosarum br.
trifoli E11 and E12 increased grain yield of rice in field inoculation experiment

(Yanni et al. 1997). Huang and Erickson (2007) tested the effectiveness of R.
leguminosarum for improving growth and yield of pea and lentil. They found

improved seedling growth, nodule biomass, and shoot and root biomass in peas.

The effect of different methods of rhizobia inoculation on yield, root nodulation,

and seed protein contents of two lentil varieties and improvement in nodulation was

observed in peanut by inoculation with Rhizobium species (Ahmad et al. 2008; Dey
et al. 2004). Pandey et al. (2004) reported that four isolates from legume plants of

the sub-Himalayan region having nitrogen-fixing ability were confirmed by molec-

ular technique and amplification of 781 bp nifH fragment. Another separate study

on the enhancement of pulse crop in the Northeast Himalayan region done by

Choudhury and Azad (2005) reported that rhizobia are more effective for the

enhancement of pulse crop production by observing almost all growth parameters,

namely, nodule number and nodule dry weight, root and shoot biomass, nitrogenase

activity, N and P content of plant, and chlorophyll content enhancement. Similar

results of yield enhancement due to Rhizobium inoculation were reported by Subba

Rao (1993) and Tilak (1992).

6.5.1 Nitrogen Fixation

Rhizobium is the most extensively and longest exploited PGPR for their ability to

fix N2 in legume host including high altitude crop Macrotyloma uniflorum L. and

Phaseolus vulgaris L. Nitrogen is abundant in atmosphere (78 %) in the air of

gaseous form measuring about 8,000 pounds nitrogen in the air over every area at

land. The available N2 or fixed nitrogen utilized by the plant for their growth and

maintenance and further for their biomass production. Nitrogen as an essential plant

nutrient is being used annually about 42 million tons on global scale for the great

production of cereal crop. Symbiotic association of N2-fixing microorganisms with

legumes converts atmospheric elemental nitrogen (N2) into ammonia (NH3)

(Shiferaw et al. 2004). Reduction of nitrogen gas to required ammonia involves

enzymatic reaction carried over by the majority of PGPR including rhizobia.

Rhizobia form intimate symbiotic relationship with legume by responding chemo-

tactically to signaling molecule flavonoid, which induce the expression of nodula-

tion in rhizobia (Lhuissier et al. 2001; Dakora 2003; Matiru and Dakora 2004). In

relation to crop productivity inoculation of compatible rhizobial strain significantly

produce substantial amounts of nitrogen resulting symbiosis interaction (Deshwal

et al. 2006). Rhizobia were found to enhance nodulation, dry weight of nodules,

nitrogen fixation, and yield legume plants. Rhizobial inoculation of P. vulgaris
showed significant difference in nitrogen content for studied parameters

(Mohammed Ahmed et al. 2009). It was observed that legume inoculations with

rhizobia had higher concentration of hemoglobin, nitrogenase activity, and N-fixing

efficacy and thus form a greater symbiotic relation to enhance the content of
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nitrogen in the rhizosphere for plant growth promotion. Lee et al. (2005) reported
that inoculation of rhizobia increases growth and yield of plants under nitrogen-

producing condition.

Rhizobia are soil bacteria capable of forming a nitrogen-fixing symbiosis with

leguminous plants. To form an effective symbiosis, rhizobia require several classes

of specific genes. These include nod genes, which encode the production of Nod

factors, which stimulate the plants to produce symbiotic nodules. The nod genes are
found in all rhizobia and code for Nod factor which are responsible for nodule

formation (Lindström et al. 1995). These specific genes, which produce the nitro-

gen-fixing nitrogenase enzymes and nodulation genes, which encode the production

of Nod factors, stimulate the plants to produce symbiotic nodules. NifH gene codes

for Fe-protein subunit of nitrogenase enzyme and for dinitrogenase reductase (Dean

and Jacobson 1992). Nitrogen fixation ability and nodulation ability of rhizobia can

be confirmed by the amplification of nifH and nodC fragments. R. leguminosarum
and E. meliloti nodulated their host plant horse gram which further substantiate the

presence of nodC genes. nodC gene was also recently used to study the nodulation

gene diversity of soil rhizobial population (Sarita et al. 2005). The nitrogenase

activity of the rhizobia is usually confirmed by the amplification of some specific nif
genes such as nifH (Young and Haukka 1996; Pandey et al. 2004). Recently,
Leelahawonge et al. (2010) reported two major symbiotic genes, nifH and nodC
to confirm the symbiotic properties of Indigofera tinctoria symbionts at the molec-

ular level. Both nifH and nodC are well conserved among symbiotic nitrogen-fixing

bacteria (Zhang et al. 2000; Leelahawonge et al. 2010). Many workers reported the

presence of nod and nif genes in different species of Rhizobium (Estrella et al. 2009;
Wang et al. 2009) and Ensifer (Pandey et al. 2004; Kumar et al. 2006; Wang et al.
2009).

6.5.2 Plant Growth Hormone (IAA) Production

As stated, growth substances of bacterial origin accounts for induction of plant

growth development (Tien et al. 1979; Fulchieir et al. 1993; Teale et al. 2006). Such

chemical substances are released by rhizospheric bacteria and later absorbed by

roots (Libbert and Silhengst 1970). These are mainly composed of indoleacetic acid

(IAA) (Gupta et al. 1999), gibberellic acid (Mahmoud et al. 1984), cytokinins (Tien

et al. 1979; Garcia et al. 2001), and ethylene (Arshad and Frankenberger 1991;

Glick et al. 1995; Ma et al. 2002). IAA and cytokinins produced by PGPR reported

to play a significant role in growth promotion of both leguminous and non-leguminous

plants (Noel et al. 1996; Hirsch et al. 1997; Patten and Glick 2002). The plant

growth-promoting effect is tentatively attributed to production of auxin commonly

produced by soil bacteria. In general, biosynthesis of IAA uses tryptophan (Trp) as

a precursor, and several pathways for conversion of Trp into IAA have been

described (Costacurta and Vanderleyden 1995; Baca and Elmerich 2007).

IAA is a common product of L-tryptophan metabolism of soil fungi and plant
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growth-promoting bacteria (Lynch and Bragg 1985); hence, several rhizobacteria

are reported to produce indole-3-acetic acid (IAA) in culture media especially in the

presence of tryptophan (Frankenberger and Arshad 1990; Gamalero and Glick

2011). The production of IAA by rhizobia in different legumes has been shown in

Table 6.2.

Indole 3-acetic acid is a growth-stimulating hormone which increases plant root

length, further enhancing the root surface to absorb nutrient from the surrounding

soil for plant growth promotion. So, the bacteria produced IAA secrete in the soil

which is immobilized by the seed during germination. Whereas the IAA is itself

also produced by the plant at various times of age, bacterial origin IAA promotes

the growth of plant directly by secreting such hormones.

6.5.3 Solubilizing Rock/Soil Phosphate

Agricultural production remains highly reliant on the application of phosphatic (P)

fertilizers derived from phosphate rock. Due to increasing demand and dwindling

stocks, it is predicted that current global reserves of phosphate rock may be depleted

Table 6.2 Different rhizobial isolates from selected legumes showing the IAA activity

S.No. Genera Legume References

1. Rhizobium spp. Mimosa pudica Roy and Basu (1989)

2. R. meliloti RMP1-12 Arachis hypogaea Arora et al. (2001)

3. Rhizobium spp. Dalbergia lanceolaria Ghosh and Basu (2002)

4. Rhizobia MPR1-4 Mucuna pruriens Kumar et al. (2006)

5. Rhizobium spp. Sesbania sesban Sridevi and Mallaiah (2007a, b)

6. Rhizobium spp. Phaseolus mungo Ghosh et al. (2008)

7. Rhizobium spp. HGR3

and HGR8

Macrotyloma uniflorum Prabhavati and Mallaiah (2008)

8. Rhizobium DASA 57053,

57065, 57076, 57010,

57027

Indigofera tinctoria Pongsilp and Nuntagij (2009)

9. Sinorhizobium DASA

57015, 68012

Derris elliptica Pongsilp and Nuntagij (2009)

10. Rhizobium sp. BHURC01 Cicer arietinum Verma et al. (2010)

11. Sinorhizobium spp.

KCC1-8

Cajanus cajan Dubey et al. (2010)

12. Rhizobium spp. Vigna radiata Zahir et al. (2010)

13. R. leguminosarum LSI19,
LSI23, LSI30

Lens culinaris Mehboob et al. (2011)

14. Rhizobium spp. Arachis hypogaea, Cicer
arietinum, Melilotus,
Trigonella

Sahasrabudhe (2011)
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within 50–100 years (Cordell et al. 2009). Furthermore, continued agricultural

expansion had led to co-saturation of many ecosystems with both N and P, resulting

in the degradation of terrestrial, freshwater, and marine resources (Tilman et al.

2001). This concern has highlighted the imperative need to better understand the

plant–soil–microbial P cycle, with an aim of reducing our reliance on mineral

fertilizers. It is, therefore, the need of the hour to harness microorganism that

could support P cycling in agroecosystems. It is established that majority of soil

microbes have the potential to enhance the rate of organic P (Po) or inorganic P (Pi)

cycling by solubilizing insoluble organically bound and mineral-bound phosphorus.

Phosphorus (P) is second only to N in terms of quantitative requirement for crop

plants (Goldstein 1986; Feng et al. 2004; Fernandez et al. 2007; Takahashi and

Anwar 2007; Gamalero and Glick 2011). It is found in soil, plant, and

microorganisms in both organic and inorganic forms. Soil contains phosphorus in

insoluble form complexed with cations like iron, aluminum, and calcium. However,

the total P content in an average soil is 0.05 % (w/w), and only a very small fraction

(~0.1 %) of the total P present in the soil is available to the plants because of its

chemical fixation and low solubility (Stevenson and Cole 1999; Illmer and Schinner

1995). Phosphorus may be added for enhancing fertility to soil either as chemical

fertilizers or as leaf litter, plant residues, or animal remains. However, 75 % of

phosphate fertilizer applied to soil are rapidly immobilized and thus become

unavailable to plants (Rodriguez and Fraga 1999). Therefore, P deficiency is a

major constraint to crop production, and under such conditions, the microorganisms

especially PGPR offer a biological rescue system capable of solubilizing the

insoluble inorganic P (Esitken 2011). Phosphate-solubilizing microorganisms

(PSMs) are ubiquitous, and their numbers vary from soil to soil. In soil,

P-solubilizing bacteria constitute 1–50 % and fungi 0.5–0.1 % of the total respec-

tive population. The majority of the phosphate-solubilizing microbes (PSMs)

solubilize Ca–P complexes, and few can solubilize Fe–P and Al–P (Banik and

Dey 1983; Kucey et al. 1989).
Seed or soil inoculation with phosphate-solubilizing bacteria such as Azotobac-

ter, Bacillus, Clostridium, fluorescent pseudomonads, and rhizobia solubilized

inorganic phosphorus (Gupta et al. 1999, 2001a, b, 2002; Arora et al. 2001;

Deshwal et al. 2003a, b; Kumar et al. 2010, 2011; Singh et al. 2010); such bacteria

improve solubilization of fixed soil phosphorus and applied phosphates resulting in

higher crop yield (Abd-Alla 1994; Yadav and Dadarwal 1997).

Rhizobia are, perhaps, the most promising group of PSB on account of their

efficient ability for solubilizing insoluble inorganic phosphate compounds (Halder

et al. 1990; Barea et al. 2005). Several workers have demonstrated that phosphate-

solubilizing strains of Rhizobium and Bradyrhizobium increased growth and P

content of non-leguminous as well as leguminous plants (Chabot et al. 1996,

1998; Antoun et al. 1998). Rhizobia with the potential to solubilize soil P and

also with the ability to promote the growth of non-legumes had been reported

(Halder and Chakrobartty 1993). In fact, a P-solubilizing strain of R.
leguminosarum bv. trifolii have been reported to stimulate the growth of non-

legumes members of Poaceae and Brassicaceae (Höflich et al. 1995). Phosphate
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solubilization by rhizobia in leguminous and non-leguminous plant association

reported by several workers is mentioned (Table 6.3).

The ability to solubilize Ca–P complexes had been attributed to the nature of

PSMs that reduced the pH of their surroundings, either by the release of organic

acid due to exchange of phosphates by acid anion, chelate both Fe and Al ions

associated with phosphate (Katznelson and Bose 1959; Bajpai and Sundra Rao

1971; Bardia and Gaur 1972; Moghimi et al. 1978). PSMs produced organic acids

such as acetate, lactate, isovaleric, oxalic oxalate, tartrate, succinate, citrate, gluco-

nate, ketogluconate, and glycolate (Duff and Webley 1959; Banik and Dey 1982;

Cunningham and Kuiack 1992; Omar 1998; Whitelaw et al. 1999; Rodriguez and

Fraga 1999; Thakuria et al. 2004; Puente et al. 2004; Alikhani et al. 2006;

Rodriguez et al. 2006; Saraf et al. 2011). Kang et al. (2002) reported decrease in

pH and production of citrate responsible for P-solubilization activity as evidenced

by addition of NaOH. It indicated that P-solubilizing activity was mainly due to

lowering of the pH of the media due to bacterial mediated acid production (Halder

and Chakrobartty 1993; de Werra et al. 2009; Berg and Zachow 2011; Osorio

2011). However, acidification did not seem to be the only mechanism of solubili-

zation, as the ability to reduce the pH in some cases did not correlate with the ability

to solubilize mineral phosphates (Subba Rao 1982).

6.5.4 Siderophore Production

Iron is the fourth most abundant element found in the Earth’s crust but present in the

highly insoluble form of ferric hydroxide (Fe3+) and thus unavailable to

microorganisms and plants. Some bacteria have developed iron uptake systems

(Neilands and Nakamura 1991). These systems involved a siderophore—an

Table 6.3 Selected Rhizobia solubilizing phosphate

S.No. Rhizobia Host plant References

1. R. leguminosarum P31, R1 Quebec soil Chabot et al. (1996)

2. R. leguminosarum ARPV02 Phaseolus vulgaris Abril et al. (2003)

3. Rhizobium MPR1-5 Mucuna pruriens Kumar et al. (2006)

4. R. leguminosarum AGR-7, DPE-12, ELD-

15, SBO-3, SGA-15

Trifolium repens Vargas et al. (2009)

5. Rhizobium sp. BHURC01 Cicer arietinum Verma et al. (2010)

6. Sinorhizobium spp. KCC1-KCC8 Cajanus cajan Dubey et al. (2010)

7. R. leguminosarum LSI19, LSI23 Lens culinaris Mehboob et al. (2011)
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iron-binding legend—and an uptake protein needed to transport iron into the cell.

Actually, siderophores are low molecular weight (~ 400–1,000 Da) iron-chelating

compounds that bind Fe3+ (ferric iron) with high affinity (Crosa and Walsh 2002;

Siddiqui 2006; Saraf et al. 2011) and transport it back to the cell, making it available

for the microbial cells (Neilands and Leong 1986; Briat 1992). The secreted

siderophore molecules with high affinity (kd ¼ 10�20–10�50) for iron bind most

of the Fe3+ that is available in the rhizosphere, thus preventing the pathogens

present in the immediate vicinity from proliferation because of lack of iron

(O’Sullivan and O’Gara 1992). Bacterial antagonists can prevent the proliferation

of fungal phytopathogens by producing siderophores that bind most of the Fe3+ in

the rhizosphere (Aeron et al. 2011; Esitken 2011). The resulting lack of the iron

prevents such fungal pathogens from proliferating in this immediate vicinity.

Earlier, Kloepper et al. (1988) stated that the production of siderophores that

chelate and thereby scavenge the ferric iron in the rhizosphere may result in growth

inhibition of other microorganisms whose affinity for iron is lower. It has been

suggested that the ability to produce specific siderophores and/or to utilize a broad

spectrum of siderophores may contribute to the root colonization ability of biocon-

trol strains (Aeron et al. 2011). In addition, siderophores also mediated the iron

uptake by plant roots in iron-limiting conditions (Silva-Stenico et al. 2005; Kumar

et al. 2008a).

Mesorhizobium lotiMP6 (Chandra et al. 2007) and S. fredii KCC5 (Kumar et al.

2010) isolated from root nodules of Mimosa pudica and Cajanus cajan, respec-
tively, secrete the hydroxamate type of siderophore and induce growth and yield of

Brassica campestris and Cajanus cajan. Suppression of phytopathogens that is due
to iron deficiency causes growth inhibition, decrease in nucleic acid synthesis,

deformation of cell morphology, etc. (Mathiyazhagan et al. 2004).
Deryło et al. (1994) reported Rhizobium sp. as siderophore production in differ-

ent host plants (Duhan et al. 1998; Deshwal et al. 2003a, b; Sridevi et al. 2008).
Rhizobia producing siderophore resulting inhibition of other microorganisms fur-

ther in plant growth promotion and higher crop yield. Some of the rhizobia

producing siderophore are listed along with host plant (Table 6.4).

6.6 Present Status of Horse Gram and Common Bean

This chapter provides an overview studies to the potential of Rhizobia in produc-

tivity enhancement of Macrotyloma uniflorum L. and Phaseolus vulgaris L., two
important legumes cultivated in the western Himalaya. Our aim is to provide a

concise study on rhizobia as PGPR to increase crop production of these crops in

high-altitude regions. PGPR applications in agriculture-based industries for eco-

nomic development are in an eco-friendly manner. The overall strategy for increas-

ing crop yields and sustaining them at high level by using indigenous rhizobia in

two native legumes growing in the western Himalaya.
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6.6.1 Macrotyloma uniflorum L. (Gahat)

Macrotyloma uniflorum (Lam.) Verdc. (horse gram) is largely cultivated, especially

in dry areas of India, Australia, Burma, and Sri Lanka. It is one of the important

legume crops grown in tropics and subtropics regions in India. In India, it is

commonly known as Gahat, kulat, horse grain, hurali, kalai, kallu, kerdekorn,

kollu, etc. Horse gram is also grown in higher reaches of Uttarakhand state of

Indian Himalaya. However, hilly area under cultivation varies and is cultivated

more in areas in the Garhwal Himalayan region (60.3 %) than that in the Kumaon

region (39.7 %) as stated by Shukla et al. (2006). At present, it ranks third among

Indian pulses in area, covering about 1.7 million hectares with a total production of

0.74 million tons of the total cultivated area under pulses cultivation in India

(Kumar 2006).

It is a major ingredient in the Pahadi cuisine of Himalayan areas of North India.

It is cooked in a round iron saute-pan (“kadhai”) to prepare Ras, a favorite of most

Table 6.4 Selected Rhizobia producing siderophore

S.No. Rhizobia Host plant References

1. Bradyrhizobium japonicum Glycine max L. Guerinot et al. (1990)

2. Melilotus alba L. Persmark et al. (1993)

3. Astragalus spp. Deryło et al. (1994)

4. S. meliloti Ononis spp. Deryło et al. (1994

5. Rhizobium spp. Genista spp. Deryło et al. (1994)

6. Rhizobia spp. Cicer arietinum L. Roy et al. (1994)

7. B. japonicum Glycine max L. Wittenberg et al. (1996)

8. R. cicero Cicer arietinum L. Berraho et al. (1997)

9. Bradyrhizobium spp. Cajanus cajan Duhan et al. (1998)

10. Rhizobium spp. Cajanus cajan Duhan et al. (1998)

11. R. leguminosarum bv. viciae Pisum sativum, Lens
culinaris

Dilworth et al. (1998)

12. R. leguminosarum bv. phaseoli – Carrillo-Castañeda and Cano

(2000)

13. R. leguminosarum bv. trifoli – Lynch et al. (2001)

14. R. meliloti RMP3 and RMP5 Arachis hypogaea Arora et al. (2001)

15. Rhizobium spp. Arachis hypogaea Deshwal et al. (2003a)

16. Bradyrhizobium spp. Arachis hypogaea Deshwal et al. (2003a)

17. Sinorhizobium MPR3 and MPR4 Mucuna pruriens
Linn.

Kumar et al. (2006)

18. Rhizobia Cajanus cajan Khan et al. (2006)

19. R. leguminosarum ICARDA 441 Vicia faba L. Mazen et al. (2008)

20. Mesorhizobium spp. – Ahmad et al. (2008)

21. Mesorhizobium RC3 Cicer arietinum L. Wani et al. (2008)

22. Rhizobium spp. Sesbania
procumbens

Sridevi et al. (2008)

23. Sinorhizobium KCC1, KCC5 Cajanus cajan Dubey et al. (2010)
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Kumaonis. Besides the Himalayan region, this grain legume is also grown in other

Indian states, namely, Tamil Nadu, Karnataka, and Andhra Pradesh. The seeds are

parched and then eaten after boiling or frying, either whole or as a meal (Pulseglove

1974) and proved important feed for cattle and horses. The stems, leaves, and husks

are also known to be used as fodder; a good source of proteins, carbohydrates, and

essential amino acids; and as an excellent source of iron and molybdenum (Katiyar

1984). It possesses many health beneficial components (Viswanatha et al. 2006) and

is one of the major ingredients of Ayurvedic medicine “CYSTONE” prescribed

commonly to the patients suffering from kidney (stone) ailments (Singhla and

Kumar 1985; Mukherjee et al. 1984). The aqueous extract of this drug is known

to inhibit the initial precipitation of calcium and phosphorus ions (Jethi et al. 1983)
as evidenced by clinical studies. Earlier, this plant has been proved as one of the

potential food sources by US.

Verdcourt (1982) studied various species of Macrotyloma and concluded that

instead of Dolichos, it is grouped under a distinct genus asMacrotyloma uniflorum.
Another species,Macrotyloma axillare, is identified as a wild relative and generally
grown for fodder purpose. Macrotyloma axillare, Macrotyloma africanum, and
Macrotyloma daltonii are three related species reported from Australia and are

forage types. Macrotyloma ciliatum (Willd.) Verdc. is found in Tamil Nadu (Nair

and Henry 1983; Matthew 1983) and Andhra Pradesh (Pullaiah and Chennaiah

1997). Macrotyloma sar-garhwalensis is wild relative of horse gram found in the

Garhwal Himalayas (Gaur and Dangwal 1997). It is cultivated in the entire sub-

Himalayan tracts up to 1,800 m in sunny and exposed places, and this crop is

drought resistant but cannot withstand waterlogged condition and adapted to a wide

range of soils from sands to gravels to clay loams and heavy clays. It is known to

easily tolerate a pH range of 6.0–7.5 but is fairly tolerant of soil salinity.

The plant with a height of 100–110 cm is a slender, sub-erect annual herb with

slightly twining, downy stems and branches. The leaves of this plant are trifoliate,

while the flower is pale yellow in color. The linear and flattened pod is generally

composed of about 5–7 seeds each. Flattened shiny seeds are small and 3–6 mm in

length. The seed color varies which ranges from light red, brown, black, to mottled.

Propagation of the plant is through both seed and vegetative methodologies. The

sowing time is early rainy season from June to September and gets maturity within

125–130 days in field. The crop is also grown as a green manure meant to increase

the soil fertility status.

6.6.2 Phaseolus vulgaris L. (Rajma)

Phaseolus vulgaris L. is one of the most ancient crops of world. It is being

cultivated in Central America since 4000 BC. The word Phaseolus comes from

the Greek phaselua, “which refers to a canoe-like boat reminiscent of a bean pod”

(Albala 2007). It is dominant in the staple diets of lower income people in the

Americas, Africa, and Asia, together with maize. Beans are extensively diverse
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crops in terms of their uses for human nutrition and a major protein and calorie

source in the world (Sharon 2003).

It is an important pulse crop of India cultivated in sub-Himalayan and higher

Himalayan ranges at 1,200–1,800 m mainly in Maharashtra, Himachal Pradesh,

Jammu and Kashmir, and Uttarakhand. Due to its nutritive components, it is one of

the 10 most important crops of the world. In our country, the area under which

common bean are cultivated is 9,700 million ha (only 36 % area) as compared to

27,086 million ha all over the world. While, its production in India is 4,330 million

tons (only 23 %) as compared to 18,943 million tons in the world (FAO, Anony-

mous 2003). It is less preferred in comparison to other pulses like Vigna radiata,
which consequently resulted in its limited cultivation restricted to certain parts of

the country. Even then, this pulse crop has gained popularity among Indian farmers

due to its high lucrative features like short growth cycle, good adaptability, and high

market price, and the most important for poor farmers, particularly women, hence

one of the names, is a woman’s crop (Spence 2006; Kumar et al. 2008b).

It belongs to the subfamily Papilionaceae of Fabaceae. The common bean is a

highly variable species with a long history. Bush varieties form erect bushes

20–60 cm tall, while pole or running varieties form vines 2–3 m long. All leaflets,

are 6–15 cm long and 3–11 cm wide. The white, pink, or purple flowers are about

1 cm long and give way to pods 8–20 cm long; 1–1.5 cm wide; and green, yellow,

black, or purple in color, each containing 4–6 beans. The beans are smooth, plump,

kidney shaped, up to 1.5 cm long; range widely in color; and are often mottled in

two or more colors.

Dry common bean is widely consumed throughout the world, and it is

recognized as the major source of dietary protein in many African countries and

India (Guzman-Maldonaldo and Paredes-Lopez 1998; Dursun 2007). A large

variability exists in common bean seed; color and size are two important quality

characteristics for the consumers. Seed size and weight depend on the genetic

variation, cultivar, and environmental condition (Gonzalez de Mejia et al. 2005).

The seed color of the beans is determined by the presence of concentration of

flavonol glycosides, anthocyanins, and tannins (Beninger and Hosfield 2003;

Aparicio-Fernandez et al. 2005).
Common bean seeds have a notable place in the folklore throughout the world

and in the traditions of many cultures such a pharmacotherapeutic effects (Hangen

and Bennick 2002; Mishra et al. 2010). The ripen dried pods and the beans are used
for curing infections of urinary tracts, kidney, and bladder stones. It is also used as a

diuretic and an antidiabetic. The juice of the fresh beans is applied over face to cure

pimples. Leaf juice as liniment is used to alleviate pain due to sprain (Pullaiah

2006); because of the presence of various bioactive compound, common bean seeds

can be associated with a decrease risk for a wide variety of chronic and degenera-

tive diseases such as cancer, obesity, cardiovascular diseases, and diabetes. Its seeds

are considered as a good dietary source (Ocho-anin Atchibri et al. 2010).
It is an interesting crop from the consumer, farmer, and processor’s point of

view. For the consumer, bean is important for its nutritive composition and its

variable uses in different culinary forms. For farmers, crop contributes nitrogen to
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the soil which often low, while dry seeds and fresh pods of specific land races attract

high market prices (e.g., Harshil Rajma of Uttarakhand). The fresh pod crop,

mainly field grown, can be produced during the coolest season in glasshouses.

For the processor, it provides many possibilities such as canned and frozen seeds

and pods (Escribano et al. 1997).
P. vulgaris is relatively important host for Rhizobia to nodulate in their root part.

These rhizobia have also been recognized in other legumes includingMacrotyloma
uniflorum, Vigna radiata, M. africanum, and Pisum sativum. Jordan (1984) and

Amarger et al. (1997) reported that some rhizobial species nodulating these legume

crops are R. giardini, R. gallicum, and R. leguminosarum bv. phaseoli. Martinez-

Romero et al. (1991) have also reported R. tropici as microsymbiont of P.
vulgaris. R. etli is also reported as most dominating root-nodulating and nitro-

gen-fixing rhizobia of common bean (Segovia et al. 1993; Wang et al. 1999a;

Beyene et al. 2004; Tamimi and Young 2004; Mouhsine et al. 2007; Grange and

Hungria 2004; Stocco et al. 2008). Five additional rhizobia are reported by

Mhamdi et al. (2002), i.e., R. etli bv. phaseoli (Silva et al. 2003; Shamseldin

and Werner 2007), R. gallicum bv. phaseoli, R. giardinii bv. giardinii, R.
leguminosarum bv. phaseoli, and R. leguminosarum bv. viciae, as asymbiotic

microorganisms of common beans.

The distribution of bean rhizobial able to nodulate P. vulgaris varies between
geographical locations, although R. etli and R. tropici appear to be widely

distributed (Young et al. 2004; Amarger 2001). Mnasri et al. (2007a) characterized

Sinorhizobium meliloti as salt-tolerating rhizobia and termed as S. meliloti
bv. mediterranense. R. yanglingense is also reported to form nodules on P. vulgaris
(Tan et al. 2001) (Table 6.5).

6.7 Productivity Enhancement

Productivity is a measure of the efficiency of crop production. It is measured in a

ratio of production output (yield obtained from crop plant) to what is required to

produce for inputs (consumption for mankind). In other words, it can be defined as a

total output per one unit for the total input. Agriculturally important crop plant

consumed by mankind for their food demand and hence the production of such crop

are considered for high yield or increased productivity; the measure of the yield for

their consumption from certain field area can be defined as productivity. The

assumption of productivity enhancement is that the more the plant will grow and

become healthy, the more yield will occur. Thus, intended to produce more yield,

fertilization as well as biofertilization is practised. For biofertilization, microbial

inoculants are exploited in the crop production. Rhizobial inoculants particularly in

legume crops are capable to induce plant growth and further better yield M.
uniflorum, and P. vulgaris with Rhizobium leguminosarum showed more pro-

nounced increment in seedling growth (Ahmad et al. 2006; Bhatia et al. 2008;

Husen et al. 2009; Singh et al. 2010; Minaxi and Saxena 2010; Kumar et al. 2011;
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Kala et al. 2011) and shoot length (Hoque and Haq 1994; Patra and Bhattacharyya

1998; Shaharoona et al. 2006; Khalequzzaman and Hossain 2007; Ali et al. 2008;

Minaxi and Saxena 2010; Kala et al. 2011) than that of seedling raised by non-

bacterized seeds. Such increase in root length with greater surface area may be due

to IAA secretion by both groups of bacteria that are involved in root initiation, cell

division, and cell enlargement which enables the plant to access more nutrients

from soil (Salisbury 1994; Mantelin and Touraine 2004) and act as an habitat/

ecological niche to allow a greater number of introduced rhizobia during their

symbiotic and root-colonizing activity which is an added advantage for

supplementing the growth and development. Bashan et al. (2004) observed that

seed treatment with a PGPR positively affect the root biomass and surface. An

increase in root dimensions is directly proportional to aggressive colonization by

desired beneficial rhizobia that may also be an influencing attribute for increase in

plant productivity and phosphate solubilization process through which rhizobia

enables the plant to uptake free P (soluble form) and is available in insoluble

form in the soil. Rhizobia produced ACC deaminase, ACC of plant cell hydrolyzed

due to bacterial-mediated ACCD into α-ketobutyrate and ammonia (Glick 1995),

thereby restricting the overproduction of ethylene which leads to abnormal root

growth and imparts a visible dent on growth and development of M. uniflorum and

Phaseolus vulgaris. Thus, seeds bacterized with ACCD containing Rhizobium have

Table 6.5 Rhizobial species nodulating in P. vulgaris (common bean)

Rhizobial species Reference

S. meliloti
R. leguminosarum

bv. viciae
R. tropici
R. gallicum bv. gallicum

Mouhsine et al. (2007)

R. leguminosarum
R. tropici

Odee et al. (2002), Diouf et al. (2000), Anyango et al. (1995)

R. tropici
R. etli
R. leguminosarum
Mesorhizobium spp.

Ensifer spp.

Mostasso et al. (2002), Grange and Hungria (2004), Martinez-Romero

et al. (1991), Stocco et al. (2008), Kaschuk et al. (2006)

R. giardinii
R. gallicum
R. leguminosarum

bv. phaseoli

Amarger et al. (1997), Jordan (1984)

R. etli Segovia et al. (1993), Beyene et al. (2004), Tamimi and Young (2004),

Mouhsine et al. (2007)

R. gallicum bv. gallicum
R etli bv. phaseoli

Silva et al. (2003)

Ensifer meliloti
bv. mediterranense

Mnasri et al. (2007b)

R. etli bv. phaseoli
R. gallicum bv. gallicum

Shamseldin and Werner (2007)
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extensive root growth probably due to low level of ethylene and subsequent

improvement in vegetative parameters. Such phenomenon is now well established

in ACC containing PGPR role in growth promotion of crop plants as described by

Saraf et al. (2010). Rhizobium leguminosarum are also effective at low phosphate

level as reported by Xavier and Germida (2002). R. leguminosarum considerably

increases dry biomass of shoot and seed, N and P content of plant as reported in

green house trials (Mehdi et al. 2006). Further, the overall fresh and dry weight was

enhanced significantly with R. leguminosarum MRG6 (AB569639) during our

study (Table 6.6). Various other workers (Bhatia et al. 2008; Kumar et al. 2010,
2011; Singh et al. 2010; Minaxi and Saxena 2010; Agarwal and Ahmad 2010; Kala

et al. 2011) also observed increase in early vegetative plant growth parameters due

to application of different genera of PGPR including rhizobia.

More availability of nutrients uptake by plant made possible due to presence of

desired strain in rhizosphere inoculated by seed bacterization helps in healthy plant

growth. Rhizobia aggressively root colonize and hence showed enhancement in the

average number of pods per plant which are similar to the finding observed in

different host plants as observed by earlier workers (Bhatia et al. 2008; Kumar et al.

2010, 2011).

Thus, seed bacterization with rhizobial strains proved beneficial for raising

healthy crops. Using biological growth-enhancing rhizobia thus increases the

yield of P. vulgaris in given conditions. The enhancement of the yield parameters

in Phaseolus vulgaris due to rhizobia over non-bacterized set of control plant is

obvious due to multifarious activity of PGP attributes. As stated, an enhanced seed

germination due to treatment with beneficial rhizobia leads to sturdier plants which

give more yield in terms of grains produced per hectare. Further secretion of

siderophores by these ACC deaminase-producing strains greatly enhances the

ability of aggressive colonization target rhizosphere and warding off fungal

pathogens by iron scavenging and competition for nutrients. Enhanced vegetative

and reproductive growth achieved by R. leguminosarumMRG6 confer considerable

benefits: an increase in crop yield by 32.2 % rise over control grain yield (1,189 kg/

ha) and biological yield (4,603 kg/ha) (Table 6.7).

Table 6.6 Crop yield parameters of M. uniflorum (120 DAS) using MRG6 strain (unpublished

data from corresponding authors lab)

Treatment No. of pods/plant

Grain yield

(kg/ha)

Biological yield

(kg/ha)

Harvest

index

Crop yield % rise

over control

MRG6 19.333** 1,276 4,667 27.34 29.41

Control 15.000 986 3,863 25.48

SEM’ 0.197

CD at 1 % 0.933

CD at 5 % 0.642

Values are mean of ten replicates; a ¼ significant at 0.01 level of analysis of variance (ANOVA).

** ¼ Significant at 0.01 level of LSD as compared to control; * ¼ significant at 0.05 level of LSD

as compared to control; ns ¼ not significant at 0.05 level of LSD as compared to control
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6.8 Conclusions

Rhizobia as a diverse group of microorganisms are potential PGPR, which are

widely distributed in the agroecosystem and play a significant role in the enhance-

ment of several agricultural crops. The importance of PGPR and its potential for

plant growth promotion and enhancement in crop productivity of selected crops

have been elaborated in this chapter. Although most research work conducted so far

has largely focused on rhizobia in nitrogen fixation and other attributes such as IAA

production, siderophore production and phosphate solubilization are added advan-

tage to crop. Similar to other PGPR genera rhizobia exhibit both direct and indirect

effects to the plants. An elaborate description is given on M. uniflorum and P.
vulgaris. More studies are required to be carried out in those species which are

neglected but cultivated by marginal farmers of the Himalayan states of India.
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Chapter 7

Root Nodule and Rhizosphere Bacteria

for Forage Legume Growth Promotion

and Disease Management

Nora Altier, Elena Beyhaut, and Carlos Pérez

7.1 Introduction

The rhizosphere—the volume of soil surrounding and under the influence of plant

roots—is a unique environment that supports a large and metabolically active

microbial population, where very important and intensive interactions take place

among the plant, soil, and microorganisms (Kennedy 2005). Rhizosphere-competent

bacteria that exert a beneficial effect on plant growth are termed collectively plant

growth-promoting rhizobacteria (PGPR) (Kloepper 1993). The original definition of

rhizobacteria was restricted to free-living bacteria, although some authors have used a

broader description as any root-colonizing bacteria (Antoun and Prévost 2005). With

the original definition, the root nodule bacteria with the ability of fixing nitrogen, here

collectively called rhizobia, would not be considered as PGPR (Vessey 2003).

Rhizobia are well known as the microbial symbiotic partners of legumes,

forming N2-fixing root nodules. Since symbiotic biological nitrogen fixation

(BNF) in legumes is mediated by rhizobia, these root nodule bacteria account for

at least half of all biologically fixed nitrogen in agriculture (Lindström et al. 2010).

The role of root nodule bacteria in plant growth promotion through BNF and their

concomitant environmental benefits had already been reported in ancient times.

Besides, rhizobia also share some characteristics with other PGPR (Sessitsch et al.

2002) by producing phytohormones, siderophores, HCN; solubilize phosphates;

and can also colonize the roots of many non-legume plants (Antoun and Prévost

2005).
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PGPR may induce plant growth promotion by direct or indirect modes of action.

Direct mechanisms include the production of volatile compounds and

phytohormones and improvement of the plant nutrient status. Indirect effects

originate when PGPR act like biocontrol agents (BCA) reducing diseases by

changing microbial balance in the rhizosphere in favor of beneficial

microorganisms (Siddiqui 2005). Based on their activities, Somers et al. (2004)

classified PGPR as biofertilizers (increasing the availability of nutrients to plant)

and biocontrol agents or biopesticides (controlling diseases mainly by the produc-

tion of antibiotics and antifungal compounds and inducing systemic acquired

resistance) (Siddiqui 2005; Weller and Thomashow 2010). Among diverse bacterial

taxa of PGPR, Pseudomonas spp. are particularly suited as BCA because they are

abundantly present in natural soils, especially in the rhizosphere. They can use plant

exudates as nutrient source and improve plant performance directly promoting plant

growth or controlling diseases by a variety of mechanisms (Höfte and Altier 2010).

Current research and farm production have shown that seed inoculation with

rhizobia and PGPR, or direct application of PGPR bacteria to the soil, improves

plant productivity, quality, and health and/or reduce the need for pesticides and

chemical fertilization (Adesemoye et al. 2009; Berg 2009; Berg and Zachow 2011).

The study of the indigenous microbial population diversity, isolate searching and

characterization, and the stepwise screening are critical to develop commercial

biofertilizers and BCA (Fravel 2005; Köhl et al. 2011).

Traditionally, the approach to develop inoculants was based on isolation, testing,

and selection of single strains with desired biological properties, such as high

nitrogen fixation efficiency in symbiosis with selected host plants, antagonistic

potential, competitiveness, and tolerance to environmental conditions (Lindström

et al. 2010). Although agronomic efficacy is the most important feature, other

criteria for selection include aspects of microbial ecology, mass production, safety,

environmental risks, protection of intellectual property rights, and marketing (Köhl

et al. 2011). Culture collections that represent a broad biodiversity play a very

important role in research, as sources of authenticated biological material

(Dijkshoorn et al. 2010; Janssens et al. 2010).

Legumes offer a unique plant model to exploit the use of root nodule and

rhizosphere bacteria for growth promotion and disease suppression. The under-

standing of the ecology of legume microbes is recognized as a key tool for

developing sustainable agricultural systems. In this chapter we will discuss

concepts and prospects of seed inoculation of forage legumes with rhizobia and

pseudomonads. We will also discuss current experiences of co-inoculation with

PGPR and rhizobia, focusing on the benefits for increasing yield.
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7.2 Importance of Forage Legumes

Cow’s milk and cattle meat rank first and third, respectively, among food and

agricultural commodities throughout the world. Forage legumes are essential for an

efficient animal-based agriculture worldwide. They have been the foundation of

dairy and meat production for centuries as rich sources of protein, fiber, and energy

(Graham and Vance 2003). Besides providing high-quality feed for livestock, they

are a key component for the sustainability of crop-pasture rotations. Legumes offer

the potential for enhancing productivity as well as sustainability of mixed,

intercropped, and rotational cropping systems (Hardarson and Atkins 2003;

Howieson et al. 2008). The value of forage legumes lies mainly in their ability to

fix nitrogen (N2) from the atmosphere in symbiosis with root nodule bacteria of the

genera Rhizobium, Sinorhizobium (Ensifer), Mesorhizobium, and Bradyrhizobium,
among others, collectively called rhizobia (Graham 2008; Graham and Vance 2003;

Gualtieri and Bisseling 2000; Vance 1998). Symbiotic legumes are critical to the

sustainable nitrogen economy, structure, and fertility of soils (Peoples et al. 2009).

7.3 Root Nodule Bacteria for Growth Promotion of Forage

Legumes

Biological nitrogen fixation is second only to photosynthesis as the most important

biochemical process on earth. It can provide substantial amounts of N2 to plants and

soil, reducing the need for industrial fertilizers (Carlsson and Huss-Danell 2003;

Peoples et al. 2009). Use of legumes in pastures for soil improvement dates back to

the Romans, with Varro (37 BC; cited by Fred et al. 1932) noting “Legumes should
be planted in light soils, not so much for their own crops as for the good they do to
subsequent crops” (Graham and Vance 2003).

The most recent estimates of annual nitrogen fixation inputs by crop legumes, as

given in recent reports (Herridge et al. 2008; Peoples et al. 2009), were 21.45

million tons (Tg), and the inputs of pasture and fodder legumes, 12–25 Tg

(Lindström et al. 2010). Perennial forage legumes are usually more effective and

derive higher percentages of their N2 from the atmosphere than most grain legume

species (Hardarson and Atkins 2003). When grown in mixtures with grasses, the

latter species can take a large fraction of their N2 from the atmosphere, with average

field measurements over 80 % (Carlsson and Huss-Danell 2003). Reported rates of

N2 fixation in aboveground plant tissues are in the range of up to 373 kg

N ha�1 year�1 in red clover (Trifolium pratense L.), 545 kg N ha�1 year�1 in

white clover (Trifolium repens L.), 350 kg N ha�1 year�1 in alfalfa (Medicago
sativa L.), and 138 kg N ha�1 year�1 in birdsfoot trefoil (Lotus corniculatus L.)
(Carlsson and Huss-Danell 2003; Gregerson et al. 1999; Vance et al. 1988).

Improved and cultivated pastures integrated by forage legumes form the primary

bases of agriculture, dairy, and livestock production. Worldwide perennial
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cultivated pastures cover extensive areas, while natural grasslands oversown with

legumes sustain extensive cattle production. The most remarkable feature of utili-

zation of forage legumes has been the impact on the effective management of N in

the environment through N supply to natural and agroecosystems (Peoples et al.

2009). Their use has largely reduced N fertilization requirements while improving

farmer profitability. Consequently, forage legume–rhizobia symbiosis does have a

significant effect on world economy. On an average, one ton of urea (the most

utilized N fertilizer) costs approximately $420 and supplies 460 kg N. With average

estimates of N2 fixation in forage legumes of about 230 kg N ha�1 year�1, $210 is

saved per hectare (Montañez et al. 2003). In Uruguay, dairy farms occupy an area of

750,000 ha, sown with legume-based pastures in mixture with grasses, mainly

alfalfa, birdsfoot trefoil, and clovers (DIEA/MGAP 2009; Rebuffo et al. 2006).

Extensive beef cattle production is sustained on natural grasslands improved with

oversown exotic Mediterranean legumes, mainly Lotus spp., with Lotus subbiflorus
representing 87.6 % (DIEA/MGAP 2002; Rebuffo et al. 2006). The total area sown

to forage legumes covers over two million hectares, which represents 15 % of

agricultural land. Considering these numbers, the country accomplishes savings

ca. 420 million dollars per year through reducing imports of N fertilizer (Lindström

et al. 2010).

7.3.1 Rhizobial Inoculants for Forage Legumes: The
Uruguayan System

The perennial strategy of most temperate forage legumes like alfalfa (Medicago
sativa L.), trefoils (Lotus spp.), and clover (Trifolium spp.) relies on the success of

stand establishment and early development of healthy root systems to achieve high

dry matter yields and optimal productivity. Microbial-based strategies that improve

forage legume productivity, optimize N2 fixation, conserve soil N, and augment the

pool of soil N for the benefit of rotational nonleguminous crop have been exploited

worldwide through rhizobial inoculant technology (Brockwell and Bottomley

1995; Carlsson and Huss-Danell 2003; Catroux et al. 2001; Herridge 2008).

Although the production and use of commercial rhizobial inoculants have now

worldwide extent, Catroux et al. (2001) concluded that their quality remains poor

despite available technologies. They further stated that legal requirements and

official surveillance can improve the quality of inoculants and thus their efficacy.

As observed in countries with standards and government control, the trend is to

increase quality using sterile carriers or liquid inoculants in order to avoid

contaminants and to support high numbers of rhizobia in the packages for at least

1 year of storage. Uruguay, together with Brazil, Canada, and France, has been

recognized as one of the countries with regulatory authorities responsible for

quality control services, supported by appropriate legislation (Brockwell and

Bottomley 1995; Lupwayi et al. 2000).
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The Uruguayan system for biological N2 fixation technology has been recently

described (Lindström et al. 2010; Montañez et al. 2003). Created in 1960, the key to

its success has been the implementation of a national government-supported strat-

egy, based on a strong functional relationship between public research, private

industry, and farmers. Regulatory authorities (Ministry of Livestock, Agriculture

and Fisheries, MGAP) are supported by appropriate legislation, setting

requirements for inoculant registration, mandatory strain recommendation, and

enforcement of inoculant quality control. Under a recent agreement between the

MGAP and the National Institute for Agricultural Research (INIA), actions are

performed in the Laboratory of Soil Microbiology and Inoculant Quality Control,

located at INIA Las Brujas. The main activities of this laboratory consist of

(1) characterization and selection of rhizobial strains, (2) preservation of the culture

collection as a high-quality source of rhizobial germplasm for research, (3) supply

of strains to industry, and (4) quality surveillance of commercial inoculants. High-

quality standards are achieved using sterile peat carrier as well as liquid

formulations, with high numbers of viable rhizobia in the packages being manda-

tory (2 � 109 rhizobia g�1 peat), as pointed out by Herridge (2008) and Lupwayi

et al. (2000). Currently, four local manufacturers share the inner market with four

imported brands. Moreover, high-quality rhizobial inoculants are exported to other

South American and African countries. As a result of research and extension

policies, inoculation technology has been broadly adopted by farmers.

As mentioned before, Uruguay bases its improvement of forage supply on the

temperate legumes alfalfa, clover, and trefoils. The main rhizobial partner of alfalfa is

the fast-growing species Sinorhizobium (Ensifer) meliloti (Vance et al. 1988); the

fast-growing species Rhizobium leguminosarum biovar trifolii nodulates Trifolium
spp. (Gualtieri and Bisseling 2000), while the moderately fast-growing

Mesorhizobium spp. and slow-growing Bradyrhizobium spp. nodulate Lotus species
(Dı́az et al. 2005; Gregerson et al. 1999; Sotelo et al. 2011). Selected strains with

superior symbiotic capacities need to be isolated and developed as inoculants

(Hardarson and Atkins 2003; Lupwayi et al. 2000). Periodic assessment of commer-

cial strains under field conditions is essential (Hardarson and Atkins 2003) and the

need to monitor culture variability to maintain the quality of legume inoculants has

been also emphasized (Bloem et al. 2002). In Uruguay, S. meliloti strain U45

(isolated from alfalfa, Uruguay) was formerly used for alfalfa commercial inoculant.

However, variant cultures of this strain exhibited variability on the N2-fixing effec-

tiveness and competitiveness when inoculated to two alfalfa cultivars (Bloem et al.

2002). Therefore, it has been currently substituted by strain U143 (Synonym: MCH3,

isolated from alfalfa, Uruguay) that has shown more stable results over time.

Within the genus Lotus, specific inoculants are marketed (Table 7.1). The

commercial strain for L. corniculatus, used since 1972, is U510 (Synonyms:

U226, B816, introduced from Australia); this strain, which has always been

regarded as Mesorhizobium loti, was recently classified as M. huakuii biovar loti
(Sotelo et al. 2011). The commercial strain for L. subbiflorus is U531 (Synonym:

NC3, native to Uruguay), while for L. uliginosus the strain U1401 (Synonyms:

U526, U416, NZP2309, introduced from New Zealand) is used. Both U531 and

U1401 are slow-growing Bradyrhizobium sp.
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7.3.2 Diversity of Indigenous Rhizobia Nodulating Alfalfa
and Lotus spp.

The need for rhizobial strains with enhanced N2 fixation and tolerance to edaphic

constraints (i.e., soil pH) has been repeatedly emphasized (Catroux et al. 2001;

Graham and Vance 2003; Langer et al. 2008). The development of inoculants on

diverse continents has demonstrated the importance of diversity of indigenous

rhizobial populations for both symbiotic nitrogen fixation and the success of

inoculation (Lindström et al. 2010). A great diversity at species and strain levels

is found in most soils but enhanced population size occurs where compatible

legumes are grown. Several authors studied the occurrence, diversity, and symbi-

otic properties of alfalfa-nodulating strains isolated from acid soils of Uruguay and

Argentina (Castro-Sowinski et al. 2002a; Del Papa et al. 1999; Segundo et al. 1999).

Mid-acid-tolerant strains able to grow at pH 5.5 but not at pH 5.0 and acid-tolerant

strains able to grow at pH 5.0 were characterized. Ten percent of the indigenous S.
meliloti population in Uruguayan soils was tolerant to acidic conditions, and PCR

analysis of the strains suggested that considerable diversity is present. Symbiotic

analysis of the strains confirmed that they have the potential to improve alfalfa

growth in acidic soils (Castro-Sowinski et al. 2002a) and may be considered for

inoculant production (Segundo et al. 1999). Mid-acid-tolerant strains have also

been characterized for laccase activity and melanin production. Interestingly, a

plant growth-promoting effect in rice by a laccase-producing S. meliloti strain when
co-inoculated with Azospirillum brasilense was observed (Castro-Sowinski et al.

2002b).

Symbiotic effectiveness and ecological characterization of indigenous rhizobia

nodulating Lotus spp. has been extensively studied in Uruguay. Immunological,

biochemical, and genetic properties were described for a large collection of strains

(Baraibar et al. 1999; Dı́az et al. 1995; Irisarri et al. 1996; Monza et al. 1992, 1997,

2006; Sotelo et al. 2011). Based on colony type and growth rates, isolates from

nodules of Lotus spp. were separated into two groups corresponding to slow- and

fast-growing strains, nodulating L. subbiflorus (Irisarri et al. 1996) and

L. corniculatus (Monza et al. 1992, 1997), respectively. Partial 16S rDNA gene

sequencing revealed that fast-growing strains could be identified asMesorhizobium
loti species and the slow-growing as Bradyrhizobium sp. (Monza et al. 2006).

Sotelo et al. (2011) recently indicate that rhizobia nodulating L. corniculatus in

Uruguay are genetically and phenotypically diverse. Phylogenetic analyses using

16S rRNA and atpD genes, and ITS sequences clustered all the isolates within

genus Mesorhizobium. A great majority of the isolates likely belong to the species

M. huakuii, as does the commercial strain U510 (Sotelo et al. 2011).

Although specificity is not yet completely defined in the genus Lotus, local
studies have demonstrated its occurrence within indigenous population, showing

different levels of efficiency when tested on various hosts (Table 7.1). Irisarri et al.

(1996) found that the slow-growing isolates effectively nodulating L. subbiflorus
were unable to form effective nodules on L. corniculatus. Similarly, Baraibar et al.
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(1999) and Monza et al. (1992) found that all fast-growing isolates effectively

nodulating L. corniculatus induced small and ineffective nodules in L. subbiflorus.
An exception was the fast-growing strain U261 (Synonym: NZP2037), which

formed effective root nodules on L. corniculatus, L. subbiflorus, and L. uliginosus,
although suboptimal levels of nitrogenase activity were reported (Dı́az et al. 2005).

Inability of the inoculant strains to successfully compete with established rhizobia

populations in soil has been frequently reported, and agronomical implications need

to be considered. This underlines the need of rhizobial inoculation with specific

inoculant-quality strains, particularly in land where a symbiotically incompatible

Lotus species has been previously cultivated.

The importance of strains adapted to edaphic constraints is also relevant for

Lotus spp. performance. Results reported by Baraibar et al. (1999) proved that 83 %

of the indigenous rhizobia nodulating Lotus spp. was acid-tolerant in culture

medium (pH 4.5); they lend support to the importance of selecting, among the

latter, the most efficient and resistant strains to be included in the inoculants. As an

example, the overwhelming increase in the area of natural grasslands oversown

with L. subbiflorus, especially adapted to acidic soils, has been largely sustained by
the selection of the indigenous strain U531 for commercial inoculant.

7.4 Rhizospheric Bacteria for Disease Management of Forage

Legumes

Seedling diseases caused by soilborne pathogens, primarily Pythium species, are

one of the main constraints for forage legume establishment (Altier and Thies

1995). Favorable environmental conditions for disease development are low soil

temperatures and high soil moisture, which slow down germination rate and reduce

seedling emergence (Altier and Thies 1995; Martin and Loper 1999; Pérez et al.

2000). Effective management of soilborne plant pathogens requires integrated

strategies and the use of rhizospheric antagonistic microorganisms is a promising

approach (Martin and Loper 1999; Weller et al. 2002, 2007).

Microbial-based strategies to improve forage legume establishment and opti-

mize N2 fixation have been deployed worldwide through rhizobial inoculant tech-

nology (Catroux et al. 2001). However, the study of rhizospheric bacteria for plant

growth promotion and disease control of forage legumes has received less attention,

and their agronomical use remains as a challenge (Handelsman et al. 1990; Jones

and Samac 1996; Villacieros et al. 2003; Xiao et al. 2002). Fluorescent Pseudomo-
nas spp. have been extensively reported as effective biocontrol agents (McSpadden

Gardener 2007; Weller et al. 2007), including the control of Pythium seedling

diseases in other crops (Loper 1988; Martin and Loper 1999). In addition, Bacillus
spp. (Handelsman et al. 1990) and Streptomyces spp. (Jones and Samac 1996; Xiao

et al. 2002) have been explored to control alfalfa seedling damping-off.
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7.4.1 Fluorescent Pseudomonads as Biocontrol Agents

The highly diverse genus Pseudomonas contains very effective biocontrol agents

that can increase plant growth and improve plant health. However, there is a lack of

association of phylogenetic variation with biocontrol characteristics, which appear

to be strain dependent. The most commonly reported mechanisms of biocontrol by

fluorescent Pseudomonas spp. include production of antibiotics, hydrogen cyanide,
cyclic lipopeptides (Raaijmakers et al. 2006), competition for nutrients and niches,

competition for iron mediated by siderophores, and induced systemic resistance

(De Vleesschauwer and Höfte 2009). The antibiotics 2,4-diacetylphloroglucinol

(DAPG), pyoluteorin, pyrrolnitrin, and different phenazine derivatives have been

described as the main weapons of these microorganisms with antagonistic activity

(De La Fuente et al. 2004; Weller et al. 2007). Isolate screening remains essential to

find strains that can effectively be used under local conditions. By testing large

local collections of fluorescent Pseudomonas, strains can be selected with enhanced
disease-suppressing and plant growth-promoting abilities to develop bacterial

inoculants (Höfte and Altier 2010).

Research has been done to explore the biocontrol of Pythium seedling diseases

using native fluorescent Pseudomonas isolated from Uruguayan soils (Bagnasco

et al. 1998; Bajsa et al. 2005; De La Fuente et al. 2002, 2004; Pérez et al. 2000;

Quagliotto et al. 2009; Yanes et al. 2004, 2012). Several strains with enhanced

disease suppressing capability and plant growth-promoting abilities have been

selected to develop bacterial inoculants (De La Fuente et al. 2002, 2004; Quagliotto

et al. 2009; Yanes et al. 2004, 2012) (Table 7.2). Commercial registration of

selected strains is currently under way.

7.4.2 Phenotypic Characterization in the Laboratory and Under
Controlled Conditions

Initially, a collection of P. fluorescens with 700 bacterial strains was established.

They were isolated from the rhizosphere of field-grown birdsfoot trefoil plants,

collected from different agroecological regions in Uruguay. Laboratory studies

such as in vitro assessment of antagonism against primary plant pathogens and

production of antifungal compounds were performed. The presence of genes for

antibiotic biosynthesis was also investigated (Bagnasco et al. 1998; De La Fuente

et al. 2004). Three selected P. fluorescens strains, UP61, UP143, and UP148,

demonstrated in vitro antagonism and were able to protect birdsfoot trefoil from

the infection caused by Pythium ultimum and Rhizoctonia solani in vivo, under

controlled conditions (Bagnasco et al. 1998) (Table 7.2). Hydrogen cyanide (HCN)

and fluorescent siderophore production was detected among the factors possibly

involved in their biocontrol activity (Bagnasco et al. 1998). In addition,

P. fluorescens UP61 produced the antibiotics 2,4-diacetylphloroglucinol,
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pyoluteorin, and pyrrolnitrin (De La Fuente et al. 2004), whereas P. fluorescens
UP148 produced a phenazine-derivative antifungal compound not previously

described (Bajsa et al. 2005) (Table 7.2). The interaction of P. fluorescens UP61,
UP143, or UP148 with rhizobial strains used locally as commercial inoculants was

also assessed. In growth chamber conditions, birdsfoot trefoil and alfalfa seed

inoculation with Pseudomonas strains did not affect different parameters of host-

rhizobium symbiosis as observed in plant dry weight, nodulation rate, biological N2

fixation efficiency, and rhizospheric colonization (Bagnasco et al. 1998; De La

Fuente et al. 2002).

A second collection of 702 native P. fluorescens strains, isolated from the

rhizosphere of field-grown alfalfa plants, was later established. A growth chamber

in vivo assay was developed to screen the fluorescent Pseudomonas isolates for

their ability to suppress disease and promote plant growth in the alfalfa-Pythium
pathosystem, under controlled conditions (Yanes et al. 2004). When challenged

against Pythium debaryanum, a wide response on disease suppression ability was

found among Pseudomonas isolates. Twelve percent of the screened isolates

protected alfalfa plants, increasing 81 % the emergence related to the non-

inoculated control treatment (Yanes et al. 2004). A similar procedure, in the

absence of the pathogen, was used to evaluate alfalfa growth-promoting ability of

selected Pseudomonas strains as shown by biomass weight. Five P. fluorescens
strains, αC119, αP271, αP388, αT633, and αT688, which showed ability to sup-

press disease and promote plant growth, were selected for further investigation

under field conditions (Yanes et al. 2012) (Table 7.2).

7.4.3 Evaluation of Control Efficiency in Field Trials

During several years, experiments were conducted under field conditions to

evaluate the ability of P. fluorescens UP61, UP143, and UP148 to suppress

seedling diseases on alfalfa and birdsfoot trefoil (Bajsa et al. 2005; Pérez et al.

2000; Quagliotto et al. 2009). Combinations of different years, locations, and

sowing dates resulted in twenty environments for each crop. The P. fluorescens
strains successfully colonized alfalfa and birdsfoot trefoil roots at adequate

densities for biocontrol activity (Table 7.2). Results demonstrated that bacterial

seed inoculation provided a 10–13 % increase in the number of alfalfa plants

established relative to the control, while in birdsfoot trefoil the increase ranged

6–10 % (Quagliotto et al. 2009). In the presence of biocontrol strains, the

aboveground biomass was increased by 15–18 % and 6–10 % in alfalfa and

birdsfoot trefoil, respectively (Table 7.2). Our results confirmed that an adequate

stand of plants is initially required to forward the productive potential of the

pasture (Quagliotto et al. 2009).
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7.4.4 Development of Bacterial Inoculants

Laboratory assays were performed to identify a culture media for adequate biomass

production of P. fluorescens at an industrial scale, using commercially available

carbon and nitrogen sources. Sterile peat was assessed as the carrier for formulating

the bacterial inoculant, following the rhizobial inoculant technology. Thus,

P. fluorescens and rhizobia strains survived at 109 and 1010 CFU g�1, respectively,

in sterile peat inoculated with each bacterial species, when stored at 4 �C over 1

year (Bagnasco et al. 1998; De La Fuente et al. 2002).

Based on the strengths of already developed rhizobial inoculant technology,

our research has been focused on the commercial development and agronomical

performance of biological control agents. The key for the success of the

Uruguayan biological N2 fixation system has been the implementation of a

national government-supported strategy, where regulatory authorities are

sustained by appropriate legislation on inoculant registration, quality control,

and usage (Brockwell and Bottomley 1995; Lupwayi et al. 2000). Therefore, the

objective has been to develop an inoculant having both the rhizobia and the BCA;

commercial registration of selected strains is currently under way.

7.5 Co-inoculation with Rhizobia and Pseudomonads

The exploitation of PGPR in combination with rhizobia constitutes an interesting

alternative to improve nitrogen fixation of legume crops (Bai et al. 2002, 2003;

Chebotar et al. 2001; De Leij et al. 2002; Fox et al. 2011; Villacieros et al. 2003).

There have been an increasing number of reports of “helper” PGPR enhancing a

variety of legume–rhizobia symbioses (Vessey 2003). The presence of PGPR can

influence the activity of rhizobia to compete with indigenous populations for

nodulation (Gupta et al. 2003). The effects of PGPR co-inoculated on legume

symbioses include increases in nodule number and/or nodule weight and in some

cases an enhancement of nitrogen fixation or N accumulation (Fox et al. 2011).

A variety of mechanisms have been proposed for the observed responses of

symbiotic legumes to PGPR co-inoculation, including phytohormonal stimulation

of root growth (Vessey and Buss 2002), increased production of nod gene products

inducing flavonoids by the legume host (Andrade et al. 1998), stimulation of root

hair development (Lucas Garcı́a et al. 2004), and secretion of B vitamins by the

PGPR enhancing rhizobial growth in the rhizosphere of red clover (Marek-

Kozaczuk and Skorupska 2001). The production of the indole acetic acid (IAA)

is of particular interest, since this phytohormone stimulates root elongation and

increased density of both root hairs and lateral roots (Gray and Smith 2005). As

roots are the initial point for nodule formation, increased growth could result in

more colonizing sites for rhizobia.
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Fox et al. (2011) demonstrated that co-inoculation of Medicago truncatula with

Sinorhizobium (Ensifer) meliloti WSM419 and Pseudomonas fluorescens
WSM3457 enhanced the rate of nodule initiation and development. It also resulted

in increased number of nodules, total nitrogen accumulation, and dry shoot mass of

barrel medic plants. Helper PGPR, such as P. fluorescens WSM3457, may offer a

significant advantage enhancing early nodule initiation in legumes to increase the

success of rhizobial inoculants under environmental conditions that result in rapid

death of the inoculum. There is an incipient emergence of commercial inoculant

products that contain plant growth-promoting microorganisms as well as rhizobia,

though these are predominantly focused on phosphate solubilization (Leggett et al.

2007). Further research on development of co-inoculants for forage legumes is

required to prove usefulness of this innovative technology in agriculture.

7.6 Concluding Remarks and Future Perspectives

Forage legumes form the primary bases of agriculture, dairy, and livestock produc-

tion. Legume–rhizobium symbiosis is the most important route for sustainable

nitrogen input into agroecosystems. BNF can be efficiently exploited by inoculating

forage legumes with suitable rhizobia. With the global interest in microbial diver-

sity, rhizobia have also become of interest for taxonomists, molecular biologists,

and agronomists. However, many good inoculant strains are still poorly described,

and molecular and taxonomic characteristics are missing. Research and extension

policies which encourage rhizobial germplasm study and preservation, farmer

training for proper inoculant use, and legal control of commercial inoculant quality

have proven to be a successful approach to promoting the use of inoculants in

forage legumes, while enhancing biological N2 fixation at a national scale. It is our

hope that information about the well-functioning Uruguayan system, in combina-

tion with the knowledge of rhizobial diversity and current taxonomy, could help to

join together the diverse fields of rhizobia research.

Highly effective biocontrol agents can be found within the group of fluorescent

pseudomonads. However, biocontrol capability is strain dependent. Thus, isolate

screening remains important to identify effective strains adapted to local

conditions. This can be done by testing large collections of local isolates for disease

suppression or plant growth promotion. The attainment of well-structured scientific

knowledge for developing biocontrol strategies has been demonstrated worldwide.

However, scaling up, formulation, commercial production, quality control issues,

and agronomical use remain a challenge.

The exploitation of PGPR inoculated along with rhizobia constitutes an interest-

ing alternative to improve nitrogen fixation and reduce diseases of forage legumes.

However, further research is needed for co-inoculants to prove usefulness to

commercial agriculture.

Some actions must be strengthened on a global scale to recognize the ecology of

forage legume microbes as a key tool for developing sustainable agricultural
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systems: (1) establishment of regulatory legislation for registration and use of

biocontrol agents, (2) risk assessment for human health and environment, (3)

investment on research facilities, (4) recruitment and training of human resources,

(5) support of technological ventures between public and private sector, (6)

strengthening of international cooperation for collaborative research, and (7) educa-

tion and extension policies for farmer adoption.
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Pérez C, De La Fuente L, Arias A, Altier N (2000) Uso de Pseudomonas fluorescentes nativas para
el control de enfermedades de implantación en Lotus corniculatus L. Agrociencia 4:41–47

Quagliotto L, Azziz G, Bajsa N, Vaz P, Pérez C, Ducamp F, Cadenazzi M, Altier N, Arias A

(2009) Three native Pseudomonas fluorescens strains tested under growth chamber and field

conditions as biocontrol agents against damping-off in alfalfa. Biol Cont 51:42–50

Raaijmakers JM, de Bruijn I, de Kock MJD (2006) Cyclic lipopeptide production by plant-

associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol Plant

Microbe Interact 19:699–710

Rebuffo M, Bemhaja M, Risso DF (2006) Utilization of forage legumes in pastoral systems: state

of art in Uruguay. Lotus Newsletter 36:22–33

Segundo E, Martı́nez-Abarca F, Van Dillewijn P, Fernández-López M, Lagares A, Martı́nez-Drets
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Chapter 8

Bioinoculants: Understanding Chickpea

Rhizobia in Providing Sustainable Agriculture

Hammad Khan and Nagina Parmar

8.1 Introduction

Mass production or high-input agriculture, once believed to be the jewel of eco-

nomic sustainability, now has become a target of many environmental catastrophes.

Pulse crop farming, orchards, rice fields, and cotton farming are the essence of

economic stability for many developing countries (Ramarethinam et al. 2005). The

agriculture push coupled with increased populations and consumer demands has

left many farmers and agriculturalists seeking new methods of providing sustain-

able growth. To cope with the ever-increasing demand, farmers and horticulturists

have turned to biotechnology as a means for creating more applicable fertilizers and

creating genetically modified seedlings that can fix to variant environments by

introducing selective microorganisms that interact to combat pesticide and rhizo-

bial dwelling pathogens (Nautiyal 2000). These methods brought forth the wake

known as the “green revolution” (Khanna-Chopra and Sinha 1998).

Environmental concerns over water availability, alkalinity, and soil health,

through traditional methods of chemical applications, had begun to overshadow

quality of production. Agrochemicals and pesticide usage became less desirable,

opting farmers to push towards a more sustainable and self-sufficient organic

control method, encouraging quality with increased production rather than quantity

for mass production (Kakde et al. 2005). This has eliminated such traditional

methods of chemically taxing harvest areas and therefore opened the gateway for

subsidizing biological control agents, one of which is proving to make great strides

in providing sustainable agriculture, known as bioinoculants (Kakde et al. 2005;

Narain 1998).
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Bioinoculants are defined as the concoctions of microbial entities that are

supplemented as biocontrol agents to induce or suppress both biotic and abiotic

factors in promoting sustained growth (Gupta et al. 2007). Pseudomonas and

Bacillus spp. are common genera among bioinoculants that interact with diverse

rhizobial communities. These bioinoculants undertake interactions between host

and surrounding rhizosphere microorganisms by secreting and uptaking nutrients,

known as root exudates (Hayat et al. 2010). Through associated, synergistic, and

neutralistic interactions, plant growth and nodulation are promoted; however,

antagonistic interactions may occur where competition for desired nutrients and

production of antibiotic compounds may result in suppressing host characteristics

(Nautiyal 2000).

Bioinoculant interactions are very important in low-lying nutrient-deprived

soils. They are used in promoting the uptake of nutrients such as nitrogen and

phosphorus and are used for their interactive capabilities to promote desired and

suppress less desirable rhizospheric microorganisms (Borde et al. 2009). Plant

growth-promoting rhizobacteria (PGPR) and arbuscular mycorrhiza (AM) fungi

improve root nodulation and other plant growth parameters, respectively, by

mechanisms that increase surface area, improve root and shoot length, encourage

sporulation, and eliminate the need for harsh chemical applications such as chemi-

cal fertilizers and insecticidal sprays (Wang et al. 2005).

Understanding the complexity of rhizobial interactions is crucial in determining

sustainability; however, abiotic factors such as temperature, acidity, and soil com-

position may be delimiting factors that determine growth. Variant temperatures

coupled with limited aeration and pH gradients promote the survival of microbes

adapted to conditions suited for such environments (Singh et al. 2011). Regions

where water is limited and shade is minimal would have high levels of evapotrans-

piration, thus requiring deep root and shoot integration. Rhizobial flora, in such an

environment, would exist deep within the soils, requiring the bacterium to be

tolerant of conditions where oxygen and available atmospheric nitrogen

concentrations are limited (Upadhyay et al. 2000).

Applications must carefully be assessed before administering any foreign bacte-

rium to a population of native bacteria. If rejection is encountered, survival of the

native rhizobacteria as well as the supplemented microorganisms will be unlikely.

Native dwelling rhizobacteria can initiate defense mechanisms to combat potential

invading microbes by inducing the production of antibiotics or by releasing

flavonoids and acting as phytoalexins, which may tax the plant and hinder the

plant growth (Parmar and Dufresne 2011). Selecting microorganisms as potential

applicants must be carefully tested through rigorous field studies to fully understand

interactive traits. Bioinoculants essentially provide the potential of combating both

biotic and abiotic factors as well as eliminating the need for harsh insecticides and

chemicals, all the while promoting sustainable growth of the microflora within the

rhizosphere.
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8.2 Factors Affecting Sustainable Growth

Overcropping and mass production have become nationwide concerns for many

agriculturists for reasons beyond systemic productivity. Traditional methods of

chemical and insecticidal applications not only have reduced annual harvests;

rather, their use has resulted in altered soil chemistry, disrupting the balance

between plant–microbe interactions and chemical/ion/nutrient exchange. More so,

using these strategies to increase rate of production has resulted in microbial

sterility and decreased diversity of many beneficial microorganisms including

rhizobial inhabitants (Wang et al. 2005). For such factors, examining and under-

standing how old practices, once believed to be the dawn of the agrochemical

boom, have become the essence of failed intervention and hindered successive

generational growth. Here, we examine some key factors that have hampered soil

sustainability, thereby truncating successive growth yields.

8.2.1 Overgrazing, Excessive Cropping, and Improper
Agricultural Practices

Maximizing crop yield and fertility has been at the forefront for agribusinesses

across the globe, pushing towards high production, quicker harvests, and lower

costs. Excessive cropping and the expenditure of resources towards erratic practices

such as overgrazing have left soils in dire shape (Kakde et al. 2005). Soil erosion,

through less mitigating factors such as water or wind, is one direct consequence of

such unsanctioned practices. Soil infertility and degradation in India alone has

resulted in uncultivable top soil, reaching approximately 18.5 %, which is a

statistical reading recorded as the maximum global loss (Sharma 2005). Also,

175 million ha of land from a total of 329 million ha geographical area is considered

to be partially degraded in one form or another caused by excessive cropping and

improper agricultural practices (Bhadauria et al. 2010). As such, natural vegetation,

essential nutrients, stored organic matter, and microbial entities cannot perform/

supply effective quantities to sustain sufficient growth nor provide fertility within

the soil flora. Through continuous tilling and agitation, the soil becomes taxed and

arid; as a result, organic/biological control methods become less responsive, as

essential precursor elements become less available (Krebs 2000). Subsidizing

organic controls, such as bioinoculants, to regions devastated by overcropping

and overgrazing is a tedious and time-consuming process. Selecting appropriate

microorganisms such as PGPR, understanding interactive characteristics of the

indigenous microflora, and then mediating symbiosis may provide soil fertility in

the long run. Unfortunately, organic turnover is slow and needs time to adapt to

environmental conditions before even attempting to correct the damage left by such

practices (Upadhyay et al. 2000). As is often the case, farmers and agriculturists

turn towards aggressive chemical treatments to essentially save a harvest season,
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potentially risking further tillage and mediating negative biological response.

Reality is, without aggressive intervention in remediating such soils, natural replen-

ishment of supplement nutrients and organic matter cannot provide an environment

needed for supplying sustainable growth conditions.

8.2.2 Soil Salinity

Sustained practices and soil quality are two key characteristics widely recognized

as mitigating factors that determine successive growth. Through some abiotic

factors and unconventional practices such as overgrazing and application of chem-

ical fertilizers, insecticides, and pesticides, soils have become vulnerable to

withering and anoxic conditions. Regions marked by such practices often turn

saline as a result (Qadir et al. 2008). Without the necessary remediation tools,

salinity can extend over fertility dynamics such as determining viability of micro-

bial entities and consequently altering the rhizoplane structure itself. Salinity and

nutrient stresses account for over 100 million ha of damaged farmland across the

globe (Ashraf et al. 2009). In India, where pulse crop and leguminous harvests are

major economic contributors to a high-population market, 8.5 million ha is consid-

ered degraded and highly saline, with 1.3 million ha reflecting in state of Uttar

Pradesh (Bhadauria et al. 2010). Characteristics of saline soils are categorized by

two parameters: one being soluble salts available in soil and the other, soil reaction.

Soluble salts accumulate in soil through waterlogging and secondary salinization

mechanisms, whereby these immobilized salts seep into the rhizoplane and

adversely prompt changes in physicochemical properties. Such salts can also

accumulate through the application of fertilizers, from atmospheric salt depositions,

as seen near coastlines and weathering of soil minerals (Wang et al. 2009).

The significance behind “salting of the soils” describes the chemical shift or

deviation in soil, which consequently effects rhizospheric competency. As more

salt-tolerant bacteria capable of adapting in such environments proliferate, nutrients

and minerals sequestered from soil become limited and specific. As a result, the

affected region encounters what is described as a shift in microbial hierarchy or

dominancy to counteract the chemical shift (FAO and IAEA 2010). This may

further be accompanied by a shift in soil composition and plant demographics to

reflect such environmental parameters. As the salt concentrations rise, osmotic

stresses, which may also be initiated by arid or semiarid conditions, activate the

plants to initiate defense mechanisms (Cordovilla et al. 1995). In this process,

bacteria may go through a physiological change to try to adapt to the saline

condition. Intracellular accumulation of low molecular weight organic solutes,

called osmolytes, tries to counteract dehydration parameters in the plant by

increases in potassium (K+) concentrations. Increasing K+ level acts to control

magnesium (Mg2+) flux’s during osmotic shock as magnesium ions combat inhibi-

tory response (Zahran 1999). Such a response eliminates any possibility of

interacting with the newly colonizing microbes. Microbial activity can be
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suppressed by transformation, through physiological changes, accompanied by the

release of phytohormones and flavonoids, which may suppress microbial activity.

More concerning, however, is the plant itself which may become chemically

deprived by not receiving adequate amounts of essential nutrients needed to

replenish itself and gear for survival (Singh et al. 2011).

8.2.3 Abiotic Factors

Abiotic stresses have been at the forefront of many failed agribusinesses. Limiting

factors, such as soil pH, aridity, aeration, and irrigation, occur naturally due to land

topography, limited resources (e.g., water scarcity), climate, and landscape.

8.2.3.1 pH Factors Affecting Sustainable Growth

pH gradients in an ecosystem vary region by region depending on many factors. Of

those, salinity, soil composition, and localized plantation are considered influencing

factors to pH profiles. Acidic soils require microorganisms that are capable of

adapting in pH gradients less than 7. Acidic conditions promote growth factors

that stimulate physical dismemberment of soil parameters and plant protective

mechanisms, such as cysts and spores, in response to environmental stresses

(Sethi et al. 1994). Acidic regions marked by coniferous plantations and aridity

often contain soils with limited productivity and marginal diversity. Limited nitrate

concentrations are characteristics of acidic soils which reflect truncated nitrogen

fixation levels and often are counteracted by high pH, which inhibit growth

regulators (Sharma 2005; Torimitsu et al. 1985). In addition, acidic soils are

associated with high levels of manganese (Mn), iron (Fe), and aluminum ions

(Al3+) (Busse and Bottomley 1989). These toxic elements act as inhibitors by

disrupting cell differentiation and morphology, suppress nutrient uptake, and

undermine plant growth. Aluminum specifically inhibits root growth and phospho-

rous uptake, while Mn initiates physiological changes, such as black necrotic spots

on leaves and chlorosis on leaf margins and cuppings (Busse and Bottomley 1989;

Government of Alberta 2002). Essential nutrients such as phosphorus are needed to

regulate metabolism and be utilized as energy. Phosphate is returned to soil in

organic forms as organic phosphate is readily used by Rhizobia. In acidic

conditions, phosphorus becomes difficult to attain as the organic element

transforms into inorganic phosphate by anionic bonding to cations, such as Al or

Fe, becomes fixed to the soil, and essentially is no longer available for nitrogen

fixation, thus hindering growth (Wiederholt and Johnson 2005).

To limit toxicological effects of Mn, Al3+, and Mn, remediation is selected

towards application of buffering solutions, primarily carbonates and bicarbonates,

to counteract acidic stresses (Powell 1994). Alkaline soils between pH 6.5 and 8.5

are preferred conditions where many plants are capable of adapting growth
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parameters due to buffering capacities coordinated by host plant and rhizobia. In a

study conducted by Bhadauria et al. (2010), using biological intervention for

remediating alkaline wastelands, it was observed that appropriate selection of

microbes and stimulation of ecological parameters could be maintained. Within a

3-year time frame, soil in such regions marked by alkaline pHs could be reclaimed

at pH 8.5, accounting for a growth of 681 diverse tree species and 21 different tree

types (Bhadauria et al. 2010). Microbes present in these alkaline soils promote the

breakdown of calcium carbonates and calcium hydroxides which act as buffering

compounds reducing hydrogen ions from suppressing growth. In such an environ-

ment, rhizobial colonies flourish by reducing acidic ions, leading to more available

phosphorus, thereby leaving the surrounding rhizosphere as a neutral environment

for interactions to occur without inhibitory stresses (Jakasaniya and Trivedi 2004).

Selecting biological methods to naturally shift acidic soils towards more alkaline

soils is encouraged. This process is quite slow and much work is needed before

implementation; however, engineered bioinoculant controls, such as acid- or alka-

line-tolerant bacterium which can promote growth in the rhizosphere, are gaining

recognition and may be at the frontier of engineered soil inoculants in the near

future.

8.2.3.2 The Arid Soil Effect on the Rhizosphere: Limited Aeration

and Irrigation

The significance and intensity of the arid soil effect on the rhizosphere and plant

growth parameters are largely influenced by land topography, climate, and drain-

age. The moisture content of the soil without adequate irrigation through evapo-

transpiration may be lost at higher rates before soil can be replenished (Bhadauria

et al. 2010). As a response to such environmental stresses, soil properties have

manifested mechanisms in which water and nutrients can be retained, all in lower

quantities, permitting potential correspondence with host plants (Vevrek and

Campbell 2002). Arid and semiarid soils are fairly porous and aerated, allowing

water and nutrients to penetrate into deep layers of soil, serving as a reservoir to

existing soil microbes. To access this “reservoir” of nutrients and water, plants must

go through physiological changes to accommodate their need for survival (Radwan

2009). In arid and semiarid regions, plant roots must stretch beyond surface layers

into deep layers, often ranging between 7 and 10 f. (Rao 2002; FAO and IAEA

2010). This physiological change can be regarded as an adaptive response to aid in

survival and, however, often may take several cultivation years before naturally

adapting. Plants of tropical regions may not be able to survive in such environmen-

tal conditions. These plants are catered towards lateral surface and subsurface

elongation in means of attaining water and nutrients. Without intervention in the

form of bioinoculant controls, PGPR/AM fungi or a genetically engineered organ-

ism, these plants will struggle to survive, as evapotranspiration rates will eventually

dehydrate the plant, resulting in shutdown and formation of cysts (Singh et al.

2009).
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It is estimated that currently over 70 million ha of farming land is affected by

drought/arid-like conditions, with numbers projected to rise. By 2025, the Food and

Agriculture Organization (FAO) estimates 1.8 billion people will be affected by

water scarcity with length of cultivable growing seasons ranging between 120 days

in drylands and 74, or less, days in arid regions (FAO and IAEA 2010; Kassas

2008). Intensive irrigation, tilling, and soil composition are directly affected by

precipitation and drainage efficiency in arid regions; however, often such soils are

subject to higher saline concentrations, erosion, and soil degradation. As a result, a

common mechanism associated with such factors is an increase in the water table

due to waterlogging (Kassas 2008). Waterlogging exists through irony as water is

the contributing factor leading to aridity. Contrary to how arid soils were described

earlier, Sharma (2005) positions waterlogged regions by describing how the actual

porous capability of soil in such a region has been truncated due to excessive tilling.

The air pockets associated with naturally developed arid and semiarid lands due to

environmental parameters are subsequently reduced. As a result, soil is less aerated

and more compact with limited capabilities for water penetration deep into soil

(FAO 1989). Anoxia is often the mitigating factor which mediates plant and

rhizobial death in such practices (Jackson 2004). Sustained respiration and synthe-

sis of metabolites and the rapid exchange of O2 and CO2 become limited and

difficult to attain with the influx of water (Setter and Belford 1990). The plant

essentially fixates from its own redox reactions as facultative anaerobes eliminate

nitrate utilization by converting nitrate into nitrogen gas through a process of

denitrification. More concerning is chemical oxides such as Mn and Fe reduced

into highly soluble forms Mn2+ and Fe2+, leading to chemical toxicity that enters

roots and disrupts cell morphology and differentiation (Arshad and Frankenberger

1990; Laanbroek 1990).

Further, microbial activity and viability become suppressed as soluble salts

accumulate in subsurface layers, resulting in altered chemistry around the roots.

With inadequate irrigation or drainage, the waterlogged regions remain stagnated

with limited permeability, and as a result evaporation rates increase, leaving behind

a highly concentrated saline layer (Sharma 2005). Waterlogging has been estimated

to occur approximately in 10 % of all irrigated farmland, resulting in a 20 %

decrease in crop productivity (Jackson 2004). Without supplementing biotechnol-

ogy or corrective irrigational means, soil in such regions will continue to become

more saline. As harvest seasons prolong, limited yields, fertility, and allocated

growing periods will decline as soil chemistry, microflora, and vegetation will all

shift to cope with arid pressures (Sharma 2005).

8.3 Effects of PGPR Bioinoculants

The microbial flora within the rhizosphere exists as a continuous complex of

interactions and sustained mechanisms. Diverse microbial communities interact

among one another in the aim of attaining sustainability, be it through synergism,
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neutralism, associated or antagonistic interactions. This is known as developing

rhizospheric competency (Nautiyal 2000). These interactions determine soil health

and plant viability as a means of characterizing which species will dominate within

the rhizosphere (de Selincourt 1996). Through chemical breakdown and uptake of

essential nutrients, a dominant species, such as PGPR, will encourage growth and

proliferation of plant parameters as well as reduce invasion from competitors by

inducing mechanisms that readily fix nitrogen, secrete siderophores for iron utili-

zation, and promote the synthesis of phytohormones (Glick 1995). Either of these

mechanisms used by PGPR bioinoculants can provide conditions that stimulate

secretion of root exudates from host plants, thereby encouraging colonial growth of

the novel species complimentary to the PGPR bioinoculant (Lynch 1990).

Interaction and uptake are of essence the mitigating factors for successive

colonization and proliferation of PGPR with an existing indigenous population.

The concentration of bacteria surrounding the rhizosphere as per gram of soil

compared to that of the bacteria found existing in aggregates dispersed throughout

the soil is generally found at much higher folds (Lynch 1990). This accounts for the

high levels of metabolic activity occurring within root regions. Nutrients such as

atmospheric nitrogen, phosphorus, and carbon are readily available in agro-rich

regions. Rokhzadi et al. (2008) demonstrated nutrient acquisition capabilities by

studying the interactions of symbiotic bacterium Mesorhizobium ciceri and

nonsymbiotic rhizobacteria from the Azospirillum, Azotobacter, and Pseudomonas
genra on growth and yield of Cicer arietinum (Rokhzadi et al. 2008). Combined

inoculation with mutually inclusive traits promote symbiotic activities that often

result in increased nutrient acquisition by activating host characteristics that allow

recognition and release of root exudates into soil (Sindhu et al. 2002). Rhizobacteria

mutually respond by uptaking soil nutrients and fixating them so they can be used

for plant synthesis. Stimulation inevitably results from the sustained nutrient supply

and exchange within the root, promoting cellular respiration and differentiation in

plant tissues (Rokhzadi et al. 2008; Zhang et al. 2011). This mechanism is similar in

both bacteria and fungi, displaying characteristics of growth fixation, uptake, and

release of nutrients by host plant and surrounding microbes (Zhang et al. 2011).

8.3.1 PGPR’s Mechanism of Biocontrol Within the
Rhizosphere

Under environmental norms, mechanisms implemented to support PGPR’s inhabi-

tation, growth, and proliferation in the rhizosphere lie towards secondary methods

of protection to complement the symbiotic invasion: the production of

phytohormones and the release of flavonoids and phytoalexins (Parmar and

Dufresne 2011). These are secreted as a by-product of an endosymbiotic interaction

to provide the plant with support and protection against invasive or damaging

stresses (Glick 1995). We will focus on the role of phytohormones on plant growth
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promotion and then try to correlate these findings with mechanisms employed by

PGPR treated in Cicer dwelling rhizospheres.

8.3.1.1 Phytohormones Supplemented with PGPR Inoculants

Phytohormones are described as plant growth-promoting hormones active in

regulating response to biotic and abiotic stresses through synergistic or antagonistic

actions. This is referred to as signaling cross talk (Schmelz et al. 2003). These

hormones induce cell elongation, aid in cell division and differentiation, and

promote lateral root development to allow nutrients and minerals to be sequestered

from distant and localized regions, essentially aiding in plant versatility under

conditions of limited surface nutrient availability (Hong et al. 1991). We will

focus primarily on auxins as hormones responsible for plant growth promotion

due to the interactive traits displayed against PGPR. Auxins are defined for their

characteristic as a plant hormone containing indole-3-acetic acid (IAA), which,

through its synthesis, stimulates rapid cell growth and differentiation (Cleland

1990). PGPR accelerate cell differentiation through its capacity to synthesize

auxin, a role typically reserved to plants which now is able to transmit dual

synthesis, accelerating cell growth and proliferation (Gaudin et al. 1994). However,

Gaudin et al. (1994) suggested, to positively benefit from maximum auxin synthe-

sis, the primary objective is to distinguish between the degree of auxin synthesis in

plants, void of PGPR, and compare that to the level of auxin synthesis when a

bioinoculant, such as PGPR, is supplemented in the rhizosphere (Gaudin et al.

1994). To understand such characteristics, a wheat plant was supplemented with a

mutant of Azospirillum brasilense strain, and trace quantities of IAA synthesis were

found (Glick 1995). Compared to the wild-type strain, production of IAA was much

limited, and as a result, limited IAA cannot effectively promote formation of

laterals roots, thereby eliminating such physiological characteristics associated

with PGPR stimulation (Glick 1995).

A study done by Khalid et al. (2004) demonstrated how effective PGPR is as an

auxin synthesizer and to which degree PGPR’s characteristics can promote survival

in foreign rhizospheres. The team used tryptophan (L-TRP) as their method of

control. The significance behind L-TRP is that it is an amino acid readily secreted in

root exudates, which holds as a precursor for the biosynthesis of auxins in plants

and microbes (Frankenberger and Arshad 1995). PGPR supplemented in L-TRP-

deficient soils were found to synthesize plant auxins in varied amounts; however,

when comparing this number to TRP-positive PGPR-deficient inoculums, PGPR

prompted synthesis at much higher levels even in the absence of TRP. In the

presence of TRP, auxin synthesis was heightened several folds, with Glick (1995)

suggesting that PGPR symbiotically coordinates uptake and chemical breakdown

with the plant’s vascular system in an effort to enhance auxin synthesis (Glick

1995). Khalid et al. (2004) also tested the versatility of PGPR strains inoculated in

sterile and non-sterile soils, a test to understand compatibility of PGPR with the

indigenous microflora. Monitored through auxin synthesis analysis, it was found
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that PGPR effectively prompted auxin synthesis at higher levels in both sterilized

and non-sterilized soils as compared to the preexisting uninoculated strains. How-

ever, uninoculated strains in non-sterilized soil provided higher degrees of synthesis

compared to single strain PGPR inoculants in sterilized soils. Furthermore, PGPR

inoculated in non-sterilized soils, in tandem with the preexisting microflora, sub-

stantially accelerated auxin synthesis, which was achieved through the secretion of

plant growth-promoting substances which encourage other PGPR bioinoculants to

take forth in the mutually inclusive interaction (Okon and Vanderleyden 1997).

Once established, the symbiotic partners fix nitrogen, promote metabolic activities,

and indirectly stimulate the plant to release much needed exudates to enrich the soil

(Parmar and Dadarwal 1997). As a result, PGPR-inoculated plants showed early

germination, early development and flowering, and increases in dry weight of root

and shoot parameters, all of which correlated to higher yields and increased

biomass (Khalid et al. 2004).

8.3.2 Synergistic Relations of PGPR with Native Cicer
Rhizobia

Cicer arietinum, also known as chickpea, is among the high-demand pulse crop

selection geared towards serving Middle Eastern and south Asian diets. With such

demands, productivity and marketing of Cicer and other pulse crops is essential in

establishing successive harvests and generational fertility to serve a largely vege-

tarian population (Reddy et al. 2000). Traditionally, production was often height-

ened through the use of chemical fertilizers and insecticidal sprays to combat

invasive species and promote soil fertility; however, after subsequent application,

physiological side effects and growth yield began to shrink. Rajasthan’s state

environmental policy 2010 reported truncated growing periods and necrosis of

cellular components in plant, and indigenous populations began to propagate,

suppressing biological activity and shifting the plant towards defense/survival

mechanisms. Through such a response, production inevitability falters as host

symbiosis no longer can be sustained, bringing about a microbial shift and conse-

quently altering the interactions within the rhizosphere (Department of Rajasthan

2010).

Coupled with the interactions of applied bioinoculants, PGPR can exist in any

form that promotes growth and fixation between host and the native microflora

population (Glick 1995). PGPR regulates successive growth and coordination

through two mechanisms in Cicer sp. and other leguminous crops: endosymbiosis

interactions with host Rhizobia and biocontrol stimulatory response mechanisms

and differentiation in cellular components (Zhang et al. 2011; Glick 1995). PGPR

and Rhizobium interactions are marked by selective integration and release of

intermediary metabolites that induce uptake and growth. Such metabolites include

flavonoids; phytohormones, such as auxins as mentioned earlier; iron-chelating
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siderophores; and antibiotics (Glick and Pasternak 2003). It is well known that

Rhizobia are equipped with specialized Nod genes; these Nod genes are inactive in

the absence of host legumes, such as Cicer. Together with Nod factors, signal

transduction between symbionts is expressed through an affinity for receptor and

signaling molecules adjacent to Nod (Tilak et al. 2010). Nod genes induce response
in the epidermis near the distal part of the nodule infection zone where infection

threads and bacteria are released (Mirabella et al. 2005). These infection sites

harvest regions that provide additional occupancy for Rhizobia to colonize, enhance
the solubilization of inorganic phosphates, and provide protection for the plant from

phytopathogens (Hayat et al. 2010). This ultimately promotes growth through

enhanced nodule and root hair formation along root structures and phosphorus

utilization, heightening physiological function of plant respiration and indirectly

prompting soil fertility (Tilak et al. 2010).

8.3.2.1 Growth Promotion by Pseudomonas spp.

Pseudomonas spp. have been identified as novel forms of PGPR that act synergisti-

cally with indigenous populations to promote growth and proliferation of plant

parameters (Antoun and Prévost 2005). In vivo and in vitro studies have shown that

supplementing Pseudomonas spp. as a PGPR-directed bioinoculant causes signifi-

cant increases in nodule yield, weight, and root and shoot biomass of various

legumes and marked increases in soil fertility (Parmar and Dufresne 2011). The

secondary function observed with Pseudomonas spp. while promoting nitrogen

fixation and symbiosis with the native bacteria population is to reduce infection

from phytopathogens by acting as an antagonist towards soilborne plant pathogens

(Khare et al. 2011).

Production of indoleacetic acid (IAA) stimulates cell elongation and cell divi-

sion by activating aminocyclopropane-1-carboxylic acid (ACC) deaminase activity

(Jacobson et al. 1994). The use of Pseudomonas fluorescens as a biological control
method for chickpea wilt was demonstrated by supplementing P. fluorescens within
the rhizosphere. This not only promoted growth and interactions of the native

rhizobacteria but acted as an antagonist towards Fusarium oxysporum f. sp. ciceri
(Vidhyasekaran and Muthamilan 1995). Fusarium oxysporum f. sp. ciceri is one of
the most devastating known soilborne fungal pathogens keen on disrupting cellular

processes and translocation of water and nutrients through development of spores,

causing vascular wilt, chlorosis, flaccidity, and discoloration in chickpea plants

(Cho and Muehlbauer 2004; Buddenhagen and Workneh 1988). The stages of

infection caused by Fusarium oxysporum f. sp. ciceri in chickpea xylem vessels

were captured by Gupta et al. using scanning electron microscopy (Gupta et al.

2010). Symptoms of the pathogenic infection were analyzed over a subset of 4 days

postinoculation (DPI) in a susceptible breed of chickpea plant, JG62, to measure

degree of wilt and internal vascular disintegration. At 4 DPI, the onset of beginning

stages of tissue damage in the xylem vessels was seen with microspores beginning

to propagate within the xylem tissue interior. At 8 DPI, larger numbers of spores
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were found causing pronounced vascular tissue damage in the xylem. At 12 DPI,

the appearance of microconidia was apparent, translating into complete demolish-

ment of the original structure of the xylem tissue. In comparison, using the wilt-

resistant WR315 chickpea plant, it was found that, at 15 DPI, no damage or

sporadic activity within the xylem was noticed. Only after 22–24 DPI, fungal

spores were detected and after 28 DPI colonization and slight tissue damage were

seen; however, no fungal division was present (Gupta et al. 2010).

Using synergistic biocontrol methods, Nautiyal supplemented P. fluorescens
NBRI1303 as an active antagonist to pathogenic Fusarium oxysporum f.

sp. ciceri, Rhizoctonia bataticola, and Pythium sp., three of the most devastating

pathogens affecting chickpea (Nautiyal 1997b). When inoculated among chickpea

seed cultivars with P. fluorescens NBRI1303, seed germination increased by 25 %,

the number of diseased plants reduced by 45 %, and seedling dry weight and shoot

as well as root length increased between 16 and 18 %. These results suggested that

the PGPR bacterium (P. fluorescens) actively and aggressively interacted with

chickpea Rhizobia to colonize and mediate mechanisms to readily promote, seques-

ter, and regulate nutrient–soil homeostasis, all the while maintaining suppressive

behavior of phytopathogenic species (Nautiyal 1997a, b). Recently, Maheshwari

et al. (2011) reported co-inoculation of urea- and DAP-tolerant Sinorhizobium
meliloti and Pseudomonas aeruginosa as an integrated approach of growth

enhancement of Brassica juncea. Gupta et al. (2010) further elaborated on this

notion of wilt resistance using Pseudomonas spp. in chickpea seedlings. Phenotypic
changes in chickpea plants over a subset of three 4 DPI intervals with infected JG62

and resistant WR315 were studied. Despite slight yellowing of the roots, WR315

plants after 12 DPI remained unaffected as compared to JG62, which by 8 DPI

began showing major signs of wilt, chlorosis, browning of roots, and retardation of

branching and growth. By 12 DPI, the plant suffered major loss with chlorosis,

accompanied by root blackening due to increased phenolic deposition (Gupta et al.

2010). Similar antagonistic interactions were also observed by Parmar and

Dadarwal (1997), studying sustainability and effectiveness through co-inoculation

of rhizosphere bacteria such as Bacillus spp. (Pseudomonas sp.) with chickpea

Rhizobium. Results indicated significant increases in nodule weight, nitrogen

uptake, and root and shoot biomass. Pseudomonas spp. “CRP55b” strain acted

symbiotically to induce increased production of flavonoids like compounds in roots

on seed bacterization accounting for enhancement in growth and percent yield

(Parmar and Dadarwal 1997). More recently Rokhzadi et al. (2008) used a combi-

nation of bioinoculant strains Azospirillum spp., A. chroococcum 5,Mesorhizobium
ciceri SWR17, and P. fluorescens P21 to mimic similar responses against chickpea

cultivars. The combined effects of the bioinoculants and PGPR strain enhanced

nitrogen and phosphorus consumption and availability, increased supply of

nutrients, and enriched production of growth-promoting substances. Secondary

effects markedly reduced phytopathogen populations and competitively inhibited

antagonistic populations. These factors accounted for improved nodulation,

increased dry matter content in roots and shoots, and promotion of grain, biomass,

and protein yields (Rokhzadi et al. 2008). Inoculation with PGPR increased growth
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parameters in chickpea plants with increased biomass and lateral root formation in

our studies (Fig. 8.1).

8.3.2.2 Growth Promotion by Bacillus spp.

Bacillus spp. is another type of soil-dwelling rhizobacteria often used for its

growth-promoting capabilities. Bacillus spp. mode of action orients itself towards

providing biological control methods through suppression of plant pathogenic

organisms, production of iron-chelating siderophores, and release of antibiotics

(Timmusk et al. 1999; Pal et al. 2000; Chakraborty et al. 2006). The capacity of

Bacillus spp. to sequester iron and other heavy metal compounds from soil prevents

redox reactions from converting heavy metal compounds into radical forms, which

are known toxicological elements geared towards suppressing plant metabolism

(Miethke and Marahiel 2007; Tian et al. 2009). Furthermore, the siderophore

activity prevents pathogenic organisms from uptaking iron; starving the pathogens

thus creates an environment unsuitable for growth and infection (Saharan and

Nehra 2011).

Bacillus spp. mode of interaction and growth compared to Pseudomonas spp. is
much similar. Both PGPR are capable of effectively solubilizing insoluble phos-

phate, hence commonly described as phosphate-solubilizing microorganisms

(PSM). Both genera have potential to increase yield and biomass content, and

both mediate symbiosis with plant and validate expression on biocontrol

mechanisms (Saharan and Nehra 2011). In a study oriented towards understanding

inoculated characteristics of PGPR and Rhizobium in chickpeas, Verma et al.

(2010) found significant increases in nodule formation, nodule dry weight and

nutrient concentration, root and shoot biomass production, and grain and straw

Fig. 8.1 Comparing Cicer arietinum (chickpea) growth inoculated with modified rhizobial

symbionts (Parmar and Dadarwal 1999)
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yield. Tests were conducted in field for a period of 2 years using inoculated seeds

and control (no bacteria), Rhizobium spp., Rhizobium spp. + A. chroococcum,
Rhizobium spp. + P. fluorescens, and Rhizobium spp. + B. megaterium. The only

considerable differences captured between coinoculated Rhizobia + Pseudomonas
and rhizobia + Bacillus were the following: earlier combinations produced higher

levels of indoleacetic acid (IAA), siderophore production, HCN utilization, and the

inhibition of Fusarium oxysporum as compared to rhizobia +Bacillus megaterium.
This difference in IAA levels account for Pseudomonas spp. ability to synthesize

tryptophan, which, as described earlier, is one of the most recognized auxins

involved in promoting cell and stem elongation (Verma et al. 2010). Bacillus spp.
marked advantage as a bioinoculant lies towards its capacity to survive within

extremes and irregular environments. Bacillus spp. has been recognized as moder-

ate halophiles or halotolerant bacteria. In the rhizosphere, Bacillus cereus 80 is

capable of adapting to various concentrations of salt, ranging in soil from 0 to 5 %

NaCl (Welsh 2000). In cultivating chickpea, Indian farmlands are often

characterized by soil salinity or alkalinity, requiring corrective remediation and

inoculation with successive strains to counteract such adverse conditions

(Bhadauria et al. 2010). Through seed inoculation of B. subtilis, growth factors in

chickpea were maintained at various conditions and often showed enhanced

biomass and nodule formation (Siddiqui and Mahmood 1995). Furthermore,

B. subtilis, a well-recognized antagonistic bacterium against phytopathogens, can

survive high soil and arid conditions ranging from 30 to 60 �C (Brock 1978;

Edwards 1990). These physiological traits marked Bacillus spp. as one of the

most recognized and versatile PGPR species. In association, as a single

bioinoculant or selected part of a co-inoculant, Bacillus spp. and Pseudomonas
spp. exhibit traits that induced proliferation geared towards suppressing soilborne

pathogens and promoting plant growth parameters.

8.3.3 The Role of AM Fungi in Soil and as a Potential
Bioinoculant

When considering fungi as a source of soil inoculums, often negative connotations

propelled by the intensive degradation by fungal species (e.g., Fusarium
oxysporum) are contributing factors to agricultural condemnation. However, recent

advances towards biotechnology have identified fungal species capable of promot-

ing successive growth and increasing soil fertility (Sharif and Moawad 2006). The

major groups of fungi that establish mutualistic symbiosis are categorized for their

ability to interact with the roots of various plant species, referred to as mycorrhizal

symbionts (Ahmad et al. 2008a). Arbuscular mycorrhizal fungi (AMF) have been

identified as existing entities in most agroecosystems, colonizing the root cortex

biotrophically and establishing a mycelium bridge (hyphal network), connecting

root to surrounding microhabitats (Egamberdiyeva et al. 2004). AM fungi are
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considered as obligate microbial symbionts, dependent on colonization of host

plants to maintain viability in the system. This mutually exclusive relationship

benefits the host through correspondence with the mycorrhizal hyphal network,

providing a larger surface area for absorption of essential immobile ions such as

phosphate, copper, and zinc needed by the plant for sustaining growth

(Paraskevopoulou Paroussi et al. 1997; Masoumeh et al. 2009). Mycorrhizal sym-

biosis also provides the plant with versatility against various biotic and abiotic

stresses through formation of stable soil aggregates, selective proliferation of

synergistic microbial colonies, and formation of macropore structures in soil to

facilitate aeration and water penetration to deep surface layers (Piotrowski et al.

2004). These compositional structure modifications and branching complexes allow

nutrients to be sequestered from various deep soil reserves, mandating a push

towards plant fitness and tolerance, increasing the probability of survival when

subsurface nutrient concentrations are limited or faced with harsh environmental

conditions (Ahmad et al. 2008b).

Macrophomina phaseolina (tassi) is a common root rot fungus, infecting about

500 plant species, one of which being Cicer arietinum (Srivastva et al. 2001).

Rhizobia provide an initial barrier to fungal pathogens; however, through the use of
AM fungi species, potential for remediating pathogenesis while promoting growth

is possible (Siddiqui and Akhtar 2009; Ozgonen and Erkilic 2007; Akkopru and

Demir 2005). Akhtar and Siddiqui (2010) studied the influence of four AM fungi

species, Glomus intraradices, G. aggregatum, G. claroideum, and Glomus sp., for
biocontrol of M. phaseolina on Cicer arietinum pod growth, nodulation, chloro-

phyll, nitrogen, phosphorus, potassium concentrations, and effectiveness of

controlling root rot. The experimental design consisted of five randomized

blocks, each with different treatments: (1) G. intraradices, (2) G. aggregatum,
(3) G. claroideum, (4) Glomus sp., and (5) control in the presence and absence of

M. phaseolina (Akhtar and Siddiqui 2010). The plants were harvested 90 days after
inoculation and grown in sandy loam soil mixed with washed river sand and farm

yard manure at 3:2:1. The inoculation of all four AM fungi species without

treatment of M. phaseolina exercised all growth parameters as compared to the

uninoculated control. Increases in shoot dry weight, number of pods per plant, the

number of nodules per root system, nitrogen, potassium, phosphorus, chlorophyll,

and degree of root colonization by AM fungi were all exhibited after the 90-day

harvest period, with G. intraradices optimizing greatest yields. Under the influence

of M. phaseolina, interestingly enough shoot dry weight also increased, recording

higher percentages, and then control and non-pathogen treatment. This gain

corresponded to the increased shoot dry weight of pathogenic fungus manifested

through AM fungi colonization, however; this also resulted in considerable

decreases to the number of pods per plant as compared to non-M. phaseolina
treatment (Akhtar and Siddiqui 2010). The number of nodules per root system

stayed relatively the same, while root colonization of AM fungi was found to be

considerably lower, suggesting formulation of spores and/or the activation of plant

defense mechanisms, inhibiting growth and colonization (Demir and Akkopru

2005). Through the influence of AM fungi on M. phaseolina-treated plants, a
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reduction in root rot index was seen, suggesting that the uninoculated control (index

of 4) was less effective in secreting enzymes and biocontrol compounds necessary

to maintain viability after infection (Pozo et al. 1999).

8.3.3.1 PGPR Interactions with AM Fungi as a Potential Bioinoculant

Diversity in the rhizosphere and surrounding microhabitats is marked by various

interactive microfloras, stimulating mechanisms to promote or suppress microbial

activity. AM fungi establish host specificity by infecting the host cortical cells,

forming arbuscules along the plant root architecture. In this, the soil-dwelling

Rhizobium and PGPR bacteria interact through endosymbiosis, forming an AM

fungal endosymbiotic bacteria capable of promoting rhizobial interactions with

mycorrhizae and plant (Bianciotto and Bonfante 2002). The typical

rhizobacteria–AM fungi interaction describes PGPR as the “mycorrhizae-helper

microorganism/bacteria,” active in stimulating mycelial growth and/or enhancing

mycorrhizal formation (Garbaye 1994). PGPR or soil-dwelling Rhizobia interact

with the mycorrhizal fungi by adhering to fungal spores and hyphal structures,

initiating exposure and spread to other microorganisms capable of symbiosis within

the rhizosphere (Bianciotto and Bonfante 2002). As PGPR or Rhizobia interact with
the host plant, the rate of exudate expulsion increases. When aided by the presence

of AM fungi, the secretion of root exudates stimulates mycelial growth in the

rhizosphere and initiates root penetration by the fungus (Azcon-Aguilar and

Barea 1992).

Furthermore, as Azcon-Aguilar and Barea (1992, 1995) observed, the rhizobial

interaction influences presymbiotic stages of AM fungal development such as spore

germination and mycelia growth, when coupled by the release of plant hormones,

instigate AM establishment within the rhizosphere and root cortex. Such morpho-

logical transformations induce physiological changes within the plant and

surrounding environment to complement the interaction. Symbiosis alters the

chemical composition of root exudates through changes in host’s physiology,

establishing shifts in mineral nutrient disposition of plant tissues, carbon allocation

and utilization, and hormonal balances. However, physical development of AM

mycelium in the rhizosphere/rhizoplane induces the synthesis and metabolism of

essential plant and microbial parameters by acting as an abundant source of carbon

(Barea et al. 2005). Secretion, uptake, and availability of root exudates,

phytoalexins and, phenolic compounds become more abundant, prompting soil

composition to become systemically modified to accommodate elevated

interactions (Duponnois et al. 2005), thereby inducing physiological changes in

the rhizobial community, marketing both quantitative and qualitative production of

viable active symbionts, such as PGPR (Barea et al. 2005). This well-nourished and

rich region of interaction and growth of mycorrhizae and mycelia is referred to as

the mycorrhizosphere (Linderman 1988; Gryndler 2000). In the mycorrhizosphere,

the principle of interaction is oriented towards promoting phosphorus uptake.

Through the extensive branching between AM fungal mycelium and host root
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structures, access to phosphate ions in soil can be elevated, extending beyond the

phosphate depleting zone and into deeper regions in soil (Smith and Read 1997).

Aside from providing the vessel for transport and available carbon, AM fungi

contributed to phosphorous capture by linking the biotic and geochemical portions

of the soil ecosystem, thereby affecting both phosphorous cycling rates and patterns

(Jeffries and Barea 2001).

Supplementing artificial phosphate feeds in aims of enriching soil content and

interactions has shown mediocre gains. It has been suggested that through ecologi-

cal soil exploration, the naturally occurring uptake of phosphate from bulk soils

produce greater levels of activation and response between indigenous microflora

and host plant parameters (Gupta et al. 2007). Due to the fact that the availability

of appropriate enzymes and secretion of stimulated growth factors promote

rhizobial and soil competency, physiological and adaptive traits catered towards

synchronizing symbiosis are induced (Barea et al. 2005). However, large doses of

phosphorous fertilizer may potentially inhibit or hinder mycorrhizal growth and

efficiency. As surface area is more prevalent, host and PGPR may absorb more

phosphorous at higher rates; however, biological response to meet the surplus may

be overwhelmed and hinder escalation to appropriate metabolite requirements

without taxing the plant of other essential compounds (Gupta et al. 2007).

8.3.3.2 Promotion by AM Fungi–PGPR Symbiosis

The mode of interaction between AM fungi and PGPR is a universally recognized

interaction, marketing each symbiont as an individual entity capable of inducing

growth. PGPR interact with host plants and indigenous Rhizobia through endosym-

biosis and release stimulatory control compounds, while AM fungi interact by

forming infection sites (spores) on host plant roots, increasing susceptibility for

Rhizobia and PGPR induction, all the while increasing surface area through hyphal

extensions (Bianciotto and Bonfante 2002). On co-inoculation, AM fungi and

PGPR initiate morphological, physiological, and biological changes in the rhizo-

sphere and mycorrhizosphere in aims of attaining prolonged growth and fertility in

various types of soil conditions. Such parameters are generated through interactions

which promote nutrient acquisition, nitrogen fixation, phosphorus capture, exudates

secretion, and release of antipathogenic compounds (Barea et al. 2005). It was

observed that AM fungi, in association with nitrogen-fixing bacteria, Azospirillum
brasilense, increase plant productivity by stimulating AM fungi root colonization,

thereby increasing the number of internal vesicles relaying nutrient capture and

flow (Linderman and Paulitz 1990). Furthermore, inoculation of Rhizobium sp. with

phosphate-solubilizing microorganism (PSM) Pseudomonas striata and AM fungi

species Glomus fasciculatum enhanced plant yield and nutrient and phosphorus

uptake for chickpea plants in phosphorus-deficient sandy clay loam soils (Zaidi

et al. 2001).

In fact, the postinoculation period between 45 and 90 days was marked by

significant levels of growth through collective combinations of PSM on root
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infection and spore density (Zaidi et al. 2001). This persistent symbiotic behavior

between AM fungi, PGPR, and rhizobia suggested similar results can be obtained in

environmentally stressed soils where viable growth is hindered due to source

availability. AM fungi species Glomus intraradices as a co-inoculant with

P. fluorescens exhibited varying deficit intensities. Individually, in water-deprived

soil, P. fluorescens (Pf) had limited grain and biomass production, while co-

inoculation with AM fungi increased assimilation of phosphorus and nitrogen

concentrations, equivalent to that of chemical phosphorus treatment. However,

when inoculated in water-deficient soil, dual inoculation with phosphorus fertilizer

and AM + Pf inoculation significantly increased grain phosphorous and nitrogen

concentrations as compared to uninoculated well-watered treatments (control).

Root colonization was significantly higher in applications with dual inoculants,

against control (uninoculated) and phosphorus fertilizer treatment in well-watered

soils (Ehteshami et al. 2007). Such increased levels of colonization coincide with

increased ACC-deaminase and chitinase activity (Shaharoona et al. 2006). Further,

Ehteshami et al. (2007) suggest these gains market proliferation through the aid of

plant hormones (phytohormones) and release of regulatory metabolites to counter-

act and maintain vitality during erratic intensities of water deficit (Ehteshami et al.

2007). Earlier, Subramanian et al. (2006) suggested that the increased absorptive

surface area and densely proliferated root growth in the mycorrhizosphere comple-

ment increased root colonization and infection. These characteristics support the

use of bioinoculants as potential remediation tools to combat water-deficit stresses.

However, water uptake through a plant vascular system can be hindered if severe

stresses disrupt root architecture and distribution, thereby affecting the rate of

water absorption per unit root (Auge 2001). In such case, naturally occurring

bioinoculants may not be as effective to counteract such stresses; however, a tool

is out there to market biocontrol with higher degree of success and adaptability: the

development of anti-pathogens and genetically engineering bioinoculative strains.

8.4 Engineering Bioinoculants as Remediation Tools

in Agriculture

With an increase of biotic and abiotic stresses plaguing agricultural sustainability,

scientists are aggressively pushing towards biological controls as a means of

primary remediation. Through the study of soil ecology and interaction, scientists

harvest the knowledge of symbiosis existing as a biological phenomenon involving

dynamic changes in the genome, metabolism, and signaling network (Kawaguchi

and Minamisawa 2010). Dynamic changes in genome are of particular interest,

as genetic engineering provides the capacity to manipulate biological growth-

promoting strains to correspond with indigenous microflora in order to maximize

productivity in harsh soils (Upadhyay et al. 2000). By mimicking indigenous traits,

engineered bioinoculants are capable of adapting to various stresses through
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production of antimetabolites to inhibit nodule occupancy of native rhizobia,
enhance regulation of plant–microbe signaling, adapt to environmental stresses,

and enhance nutrition and Exudates sequestration and usage (Archana 2010).

Others have linked engineering bioinoculants through beneficial relation of the

plants to resist soilborne pathogens, become better hosts to symbiotic microbes,

remediate toxic waste, and even attract communities of soil microbes to enhance

plant growth (O’Connell et al. 1996). These methods have been provided to

increase growth, fertility, and viability throughout harvesting seasons so farmers

are capable of competing and succeeding against the demanding agriculture market

without sacrificing quality and yield.

8.4.1 Engineering Bioinoculants as Anti-pathogens

Scientists are seeking innovative ways to engineer the rhizosphere in the aim to

create a biased rhizosphere which essentially engineers the plants to secrete

nutrients that specifically enhance the growth of mutualistic microbes (O’Connell

et al. 1996). In such an attempt, to maximize efficiency, selecting to control root rot

and pathogen invasion was of primary concern. Without adequate pathogen control,

invasive species will try to persist as the engineered rhizosphere is now the

epicenter of nutrient and chemical exchange. A lag phase between plant–microbe

symbioses may hinder development and seed fertilization due to the initial compe-

tition in the rhizosphere, depriving both the plant and microbes of essential energy

and compounds needed for sustained cellular and respiratory functions (Glick

1995). As mentioned earlier, to control chickpea root rot, P. fluorescence
NBRI1303 was supplemented in soil to act as a pathogen antagonist towards

R. bataticola, F. oxysporum f. sp. ciceri, and Pythium sp. (Nautiyal 1997a). Engi-

neering, without genetic manipulation, a chickpea rhizosphere-competent strain

involved greenhouse assays to evaluate the root-colonizing capacity of native

chickpea rhizosphere. By selecting out and inoculating the spontaneous chromo-

somal Rifr strains to seeds, without checking for mutation, the isogenic form of the

Rifr strain could be compared against survival and competition with that of the

isogenic parent and one another to exhibit specific traits. These strains could then be

added to a mixture of isolates and observed for stable growth and treatment against

soilborne pathogens or pests (Nautiyal 1997a). The NBRI1303 was identified as the

first reported single biocontrol bacterium active against the three most devastating

pathogenic fungi of chickpea (Nautiyal 1997b). Rifampicin-resistant mutant

P. fluorescens strain NBRI1303R confirmed NBRI1303 capacity to control patho-

gen infection by observing the rapid and aggressive root colonization. In particular,

strain NBRI1303 reduced the number of diseased plants by 45 %, significantly

promoted seed germination, and increased yield, length, and overall biomass of

chickpea (Nautiyal 1997b).

Treatment using PGPR has also provided an alternative against combating viral

diseases without the use of abrasive chemical pesticides and sprays through induced
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systemic resistance (ISR), which characterizes increased synthesis of defense

enzymes (M’piga et al. 1997; Zehnder et al. 2000). ISR was best described by

Kirankumar et al. (2008) expressing resistance against the tomato mosaic virus,

reporting a reduction of weight up to 59.0 % with a mean disease incidence

recording at 55.98 % (Kirankumar et al. 2008; Cherian and Muniyapppa 1998).

Several of the PGPR isolates were able to control early blight disease of tomato

caused by Alternaria solani through induced system resistance (Earnapalli et al.

2005). ISR’s mechanism behind establishing resistance lies through PGPR’s ability

to conform physiological and biochemical reactions of the host, resulting in the

synthesis and secretion of defense chemicals against pathogenic organisms (Van

Loon et al. 1998). As a result, phenol content, peroxidase and phenylalanine

ammonia lyase, (PALase) enzymes witnessed a multiple fold of augmented activ-

ity. The major biological properties of phenolic compounds are reflected towards

establishing antimicrobial activity, while peroxidase is a key enzyme in the biosyn-

thesis of lignin and oxidation of hydroxyl-cinnamyl alcohols into free radical

intermediates, which has been correlated with viral disease resistance (Saini et al.

1988; Bruce and West 1989). PALase is responsible for biosynthesis of various

defense chemicals in phenylpropanoid metabolism and promotes plant functions

that elicit strength and repair of the cell wall, antimicrobial activity, and signaling

(Daayf et al. 1997). In addition, ISR-expressing plants have the capacity to convert,

aminocyclopropane-1-carboxylate (ACC), an essential precursor molecule to eth-

ylene biosynthesis, which acts as a suppressant against phytopathogens during

initial stages of pathogen attack (Niranjan Raj et al. 2005).

Understanding the signaling pathways and supplementing advantageous

microbes to the rhizosphere mediate selective remediation where biological recog-

nition and response are tightly monitored. P. fluorescens supplemented in soil has

shown remarketed beneficence in growth of various legumes, with secondary

characteristics geared towards reflecting sustained pathogen control. P. fluorescens
produce salicylic acid, which acts as local and systemic signaling molecule, induc-

ing resistance in plants through activation and adherence to secondary plant

hormones, jasmonic acid, and ethylene (De Meyer and Hofte 1997). Signaling

compounds such as salicylic acid (SA) and ethylene (ET) play roles in regulating

and inducing basal resistance. SA is a key regulator of pathogen-induced systemic

acquired resistance (SAR), while ET is initiated through rhizobacteria-mediated

induced systemic resistance (ISR) (Niranjan Raj et al. 2005). Root colonization of

A. thaliana by P. fluorescens WCS417r has shown to elicit ISR against P. syringae
pv. tomato (PST) (Knoester et al. 1999). Mutant ethylene-response P. fluorescens
WCS417r strains revealed ISR function suppression, while SAR function remained

unaffected (Knoester et al. 1999). SAR differs with regard to its capacity to be

effective against pathogens that non-induced plants are resisted through SA-

dependent defenses, while ISR are effective against pathogens in non-induced

plants and dependent on ET-producing compounds (Ton et al. 2002). Knoester

et al. (1999) found diminished ethylene production in roots/leaves and limited

expression of the ethylene biosynthetic enzymes, ACC synthase and ACC oxidase,

and suggested that the expression of ISR requires complete submission of the signal
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transduction pathway. Thus, the potential to mediate signal transduction on

P. fluorescens WCS417r strains with nonmutant ET-dependent pathways is possible

and can be implemented to similar biochemically inducing ISR pathways in plants.

8.4.1.1 Engineering Resistance Through Rhizospheric Competency

Rhizospheric competency and ecology is a complex correlation between abiotic and

biotic factors. Supplementing bioinoculants or PGPR in the rhizosphere and pro-

posing effective microbe and plant symbiosis are a process that in vitro is highly

effective. However, in field conditions, factors such as soil chemistry, mineral

availability, and diversity of phytopathogen species may be delimiting factors to

sustained colonization and effective pathogen control (Glick 1995). The capacity of

PGPR to initiate defense mechanisms against phytopathogens requires engineering

to characterize specific traits complementing a particular pathogen genome. This

process, all be it highly effective, requires tedious interaction monitoring and

genetic manipulation to suppress or activate specific molecular markers or

sequences that complement, methylate, and destroy pathogen DNA/RNA (Prins

et al. 2008). As a result of this complexity, biotechnology ventured into understand-

ing soil characteristics and whether it is possible to use soil chemistry as a novel

characteristic to engineer PGPR and utilize rhizosphere components for diverse

suppression of various phytopathogens. Understanding PGPR and such soil

characteristics, earlier Castignetti and Smarrelli (1986) suggested supplementing

the rhizosphere with PGPR that are capable of producing and secreting siderophore

molecules with a very high affinity for iron (Fe3+).

The theory behind selecting high-affinity iron-binding siderophore molecules

lies parallel to the fact that Fe3+ is only sparingly available in nature at a sustainable

soil pH of 7.4 (Neilands et al. 1987). By engineering the PGPR to secrete

siderophore that binds at higher affinities, most of the available Fe3+ in the

rhizosphere is quickly taken up, leaving the surrounding area barren and essentially

starving pathogens through the lack of iron uptake (O’Sullivan and O’Gara 1992).

Biotechnology can engineer the bacterium to contain a receptor on the outer cell

membrane that specifically compliments the iron–siderophore complex, transports

it back to the microbial cell, and encourages utilization for microbial growth and

proliferation (O’Sullivan and O’Gara 1992; Neilands and Leong 1986).

In an attempt to justify this mechanism of pathogen resistance, Vandenbergh and

Gonzalez (1984) tested pathogen resistance against F. oxysporum in tomatoes by

using a mutant strain of P. putida that overproduced siderophore molecules. The

study revealed that overproduction of siderophore molecules in the mutant

P. fluorescens strain was better suited to provide protection against F. oxysporum
as compared to the wild-type P. fluorescens strain (Vandenbergh and Gonzalez

1984). Similarly, a mutant P. aeruginosa strain incapable of producing siderophore
molecules was tested for its efficiency to control pathogen, Pythium sp., in tomato

plants. Results confirmed Pythium sp. infection in tomato, as parameters marketing

iron consumption were solely induced by Pythium sp., rendering the PGPR
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siderophore complex inactive (Buysens et al. 1994). Pseudomonas sp. WCS417r

strain was previously identified for the bacteria’s capacity to induce systemic

resistance through an ethylene-dependent signaling pathway. This strain has also

shown marketability in inducing systemic resistance to Fusarium wilt on carnation

caused by F. oxysporum f. sp. dianthi (Fod). Duijff et al. (1993) demonstrated this

by using mutant WCS417r, defective in its capacity for siderophore biosynthesis

(sid-), and compared this to Pseudomonas putida strain WCS358r. The team

inhibited conidial germination by purified pseudobactins, which are siderophore

molecules of Pseudomonas species, and found that the ferrated pseudobactins

inhibited germination significantly less than the unferrated pseudobactins. Further-

more, sid-mutant WCS358 was ineffective in inhibiting Fod, whereas sid-WCS417r

was still able to inhibit Fod. Treatment with WCS358r strain on carnation was able

to reduce fusarium wilt, suggesting inhibition of Fod was induced solely on

siderophore-mediated competition for iron. WCS417r strain significantly reduced

wilt incidence, while mutant sid-WCS417r strain showed intermediate effective-

ness in reducing wilt, suggesting WCS417 strain mechanism of pathogen control

extends beyond siderophore inhibition, involving multiple mechanisms of

control (Duijff et al. 1993). Such binding capacities essentially mediate effective

biocontrol of disease through competitive bacterium–pathogen interactions where

sustainability is dependent on soil parameters. This mechanism can be sustained by

plants even at low Fe3+ concentrations as plants are independent of the physical

uptake process and, however, dependent on PGPR siderophore uptake and release

into plant cellular components (Crowley et al. 1988; Wang et al. 1993). Thus,

engineering rhizobacteria to compliment soil characteristics and actively suppress

pathogens through competitive antagonisms is one method of active pathogen

inhibition through rhizosphere competency.

8.4.1.2 Engineering PGPR-Mediated Antibiotic Resistance

PGPR-mediated antibiotic resistance has provided scientists another avenue of

integrated phytopathogenic suppression through direct involvement of antibiotic

genes displaying antiviral, antimicrobial, antifeedant, phytotoxic, antioxidant, cyto-

toxic, and plant growth-promoting activities (Glick 1995; Fernando et al. 2005).

Maurhofer et al. (1992) engineered a wild-type Pseudomonas fluorescens CHA0
strain to overproduce antibiotics pyoluteorin and 2, 4-diacetylphloroglucinol

(DAPG). The strain was tested for its ability to protect cucumber plants against

disease caused by Pythium ultimum and compare it to levels of wild-type

P. fluorescens CHA0 inhibition. Together with similar findings of Schnider et al.

(1994), Maurhofer and team elucidated strong correlation of increased synthesis of

antibiotics by mutant P. fluorescens CHA0 strain results in better protection and

suppression of P. ultimum in cucumber as compared to wild-type P. fluorescens
CHA0 (Maurhofer et al. 1992; Schnider et al. 1994). DAPG and pyoluteorin are

antibiotics classified as nonvolatile polyketides produced by P. fluorescens capable
of a broad spectrum of actions against pathogenic fungi, bacteria, and nematodes
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(Haas and Keel 2003). To actively suppress invasive species, P. fluorescens relay
signaling molecules such as N-acyl-homoserine lactones (AHL) to mediate com-

munication between different rhizobial dwelling bacteria as a means of antibiotic

gene expression (Pierson et al. 1998). DAPG induces its own biosynthesis and acts

as a diffusible signal for increasing the synthesis of DAPG by increasing the

expression of DAPG biosynthetic genes (Maurhofer et al. 2004). The regulation

of secondary metabolite production involves a two-component regulatory system,

consisting of cellular homeostasis and transcription of antibiotic biosynthetic genes

(Elander et al. 1968; Haas et al. 2000). A complex known as the GacS/GacA system

acts to facilitate active response to changes in gene expression and sensory signals

once AHL in most Pseudomonas sp. is recognized, exerting a positive impact on

cell density-dependent gene regulation. Upon activation, GacS/GacA modulates

expression of exoenzymes, antibiotics, and HCN during cellular transition from

exponential to stationary phase of growth to mandate cell-to-cell communication

and establish competency when antimetabolites are released in soil medium (Fuqua

et al. 1994; Sacherer et al. 1994; Heeb and Haas 2001). Several other genetic

regulators and signaling genes are involved, but for the purpose of explaining

systemic antibiotic regulation, AHL and the GacS/GacA system are sufficient.

These regulatory genes, coupled with the symbiotic soil bacterium, diversify

PGPR’s capacity to initiate, selectively suppress, and regulate the rhizosphere

from incidence of attack (Fernando et al. 2005).

Antibiotics produced by various PGPR have a broad spectrum of activity. With

P. fluorescens synthesizing DAPG, Cronin et al. (1997) used purified DAPG against

nematode Globodera rostochiensis to exemplify suppressive abilities of the PGPR.

Cronin et al. (1997) observed a decrease in the emergence of nematode cysts and

reduced juvenile mobility. Similarly, B. cereus and B. thuringiensis exhibited

pathogen resistance by producing antibiotic, Zwittermicin A (Fernando et al.

2005). Bacillus strains that produce Zwittermicin A are found at a minimum of

104 cfu/g of soil worldwide and contain a gene responsible for self-resistance

against the action of its own antibiotic (Raffel et al. 1996). Helicoverpa armigera
(pod borer) and a homopteran group of sucking insects, Aphis craccivora, represent
two of the most potent pests to chickpea growth (Das 2005). Insecticidal Cry

proteins derived from Bacillus thuringiensis (Bt) are transcribed into Cicer
arietinum genomes (Cowgill and Lateef 1996). Cry proteins are classified as

δ-endotoxins that bind to the midgut epithelial cells, inducing osmotic lysis in the

invading pest, causing reduced activity and eventual death (Herrera-Estrella et al.

2005). High expression of Bt lines carrying the Cry2Aa gene has shown to confer

near-complete protection, reporting 98 % mortality of H. armigera larvae (Sarmah

2006). Such a characteristic enables B. thuringiensis to persist as a novel insecti-

cidal strain in suppressing oomycete disease of plants and other pathogenic fungi

(Emmert et al. 2004; Silo-Suh et al. 1998). Thus it is recognized that with the utility

of PGPR, isolating genes that encode the biosynthesis of antibiotics engineered or

naturally found in expressing resistance can provide optimal growth and sustained

resistance against a wide range of phytopathogens (Glick 1995; Gill and Warren

1988). Furthermore, by secreting antibiotics in the rhizosphere, the proliferation of

8 Bioinoculants: Understanding Chickpea Rhizobia in Providing. . . 207



unwanted soil microorganisms indirectly becomes limited, reducing occupancy and

competition for nutrients, thus prompting ideal parameters for sustainability (Glick

1995).

8.5 Conclusions and Future Perspectives

Biotechnology has revolutionized modern-day agriculture. The use of bioinoculants

encourages selective integration of compatible rhizobia and genetic traits which

correspond to the host and surrounding environment. PGPR and AM fungi market

trait specificity within the rhizosphere through active chemical fixation, nutrient

cycling, and induced methods of pathogen resistance. Cicer arietinum (chickpea)

biomass, yield, nodulation, dry weight, and root and shoot lengths all increased,

while incidence of root rot and infection from pathogenic organisms decreased. As

co-inoculants, PGPR and AM fungi elicited greater response as compared to

chemical alternatives such as insecticidal sprays and fertilizers. By reducing chem-

ical alternatives, soil chemistry is managed through biological fixation and reduc-

tion. In doing so, beneficial rhizobacteria adapt and proliferate at higher levels,

establishing a colony where continuous feedback is generated and competition is

controlled. Hormones and iron-chelating compounds such as phytoalexins and

siderophores released by the chickpea plant mediated control around the rhizo-

sphere, establishing an interactive zone favorable to rhizobia expressing particular

lines of symbiosis. In harsh or heavily deprived environments, the use of antibiotics

and development of transgenic plants and PGPR enable pathogen-derived and

pathogen-induced systemic resistance towards combating abiotic and biotic

stresses. With acquired/selected genetic traits, plants and microbes are able to

perform and enhance growth parameters without sacrificing quality. A continuous

effort to establish rhizosphere competency using mutually inclusive rhizobia and

enhanced resistance against a broad range of pathogens and viruses is being made;

however, many tests and trials must be conducted before marketing for public

applications. The push for such developments will take time and patience from

both farmers and biotechnologists; however, the possibility to sustain growth in a

once infertile piece of land is worth the wait.
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Chapter 9

Plant Growth-Promoting Rhizobacteria as

Zinc Mobilizers: A Promising Approach for

Cereals Biofortification

Fauzia Yusuf Hafeez, Muhammad Abaid-Ullah,

and Muhammad Nadeem Hassan

9.1 Introduction

Zinc (Zn) is an essential element necessary for plants, humans, and microorganisms

(Broadley et al. 2007; Prasad 2008b; Cakmak 2008). Humans and other living

things require Zn throughout life in little quantities to orchestrate a complete array

of physiological functions (Canadian UNICEF Committee 2006). Zinc is a vital

mineral of “exceptional biological and public health importance” (Hambidge and

Krebs 2007). Furthermore 100 specific enzymes are found in which zinc serves as

structural ions in transcription factors and is stored and transferred in

metallothionein (Silvera and Ronan 2001; United States National Research Council

2000). It is typically “the second most abundant transition metal in organisms” after

iron, and it is the only metal which appears in all enzyme classes (King 2006;

Broadley et al. 2007).

Biofortification is a current approach aimed at increasing the bioavailability of

micronutrients such as Zn and Fe in the staple crops of specific region (Stein 2010).

In this regard beneficial free-living soil bacteria which have been shown to improve

plant health or increase yield can also mobilize micronutrients. In this chapter, the

collective results highlight the importance of Zn with comparison of various

strategies to meet its required quantity in major food crops. The next technological

revolution to eradicate Zn malnutrition would be the plant growth-promoting

microorganisms enabling better availability of Zn and other micronutrients through

their economical, beneficial, and eco-friendly nature.
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9.1.1 Role of Zinc in Plants

Zinc is an important micronutrient for plants which plays numerous functions in life

cycle of plants (Hirschi 2008). Crop growth, vigor, maturity, and yield are very

much reliant upon essential micronutrient such as Zn. It is involved in many

physiological functions in plants. It is responsible for synthesis of auxin and

catalyzes the photochemical reaction of chlorophyll. Zn is also required for the

stability of biological membranes and is important for the activity of various

enzymes, e.g., Cu/Zn superoxide dismutase (SOD) and carbonic anhydrase which

contain structurally bound Zn and plant growth regulator, i.e., indoleacetic acid

(IAA). It influences the synthesis of nucleic acid, lipids, and proteins by which the

grain quality becomes superior (Seilsepour 2006; Hershfinkel 2006; Kramer and

Clemens 2006). Physiologically it activates metabolism of carbohydrates, auxin,

RNA, and ribosome’s functions. Zn has also been reported for increased growth,

yield, and yield components as well as improved leaves and flowers nutrient content

and plant chemical constituents, i.e., pigments, carbohydrates, and flowers oil

concentration (Khalifa et al. 2011). It has been proved that Zn application to

wheat increases its concentration in flag leaves and grains (Ranjbar and Bahmaniar

2007; Cakmak 2008; Waters et al. 2009). Higher absorption of Zn produced higher

grain yield (Han et al. 2006).

9.1.2 Role of Zinc in Humans

Humans cannot attain normal vigorous growth without essential elements like Zn

(Calder and Jackson 2000). In developing countries, supplementation with Zn was

found to lower frequency and severity of infections like diarrhea and pneumonia

and decrease mortality (Black et al. 2008). Biologically Zn plays catalytic, co-

catalytic, or structural roles in more than 300 enzymes. The six enzyme classes,

namely, oxidoreductases, transferases, hydrolases, lyases, isomerases, and ligases,

depend on Zn for their activity. Although 86 % is in skeletal muscle, there are

certain parts, prostate, hippocampus, pancreas, and kidney cortex, where zinc

concentration is particularly high and may represent functional significance (Vallee

and Falchuk 1981).

Furthermore, in the synthesis of proteins and metabolism of DNA, RNA, and

metabolic homeostasis in the human body, zinc is critically involved. Strong

evidence indicates the presence of a number of zinc-containing proteins, which

directly influence gene expression (Welch 2001). Exposure to high doses has toxic

effects, but intoxication by excessive exposure is rare.
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9.1.3 Zinc Deficiency and Malnutrition

Zn deficiency is among the top micronutrient deficiencies reported in human beings

which influences almost one third of the world’s populations (Hotz and Brown

2004; Zhang et al. 2011; Stein 2010). Zn is an essential metal element for human

health. Its deficiency caused by malnutrition is the 11th major risk factor of disease

trouble in the global distribution linked with 1.8 million deaths yearly (WHO 2002).

About 100 million people mainly living in rural areas undergo Zn deficiency in

China (Zhang et al. 2011; Ma et al. 2008). Studies of inhibition of spermatogenesis

and different abnormalities of sperm production in human have shown Zn defi-

ciency (Prasad 2008a). It is estimated that globally two billion people are at threat

of zinc deficiency (Gibson and Ferguson 1998). Additionally 37 % of children less

than five years of age are at risk of zinc deficiency in Pakistan (Harvest Plus 2012).

In vitro trials have illustrated that zinc supplementation can decrease the brutal-

ity of morbidity from a numeral common babyhood infections (Harvest Plus 2012).

WHO also recommended Zn supplementation during diarrheal infection and for

treatment of severe malnutrition (WHO 2004). A study in China has proved that

zinc-fortified flour could improve its deficiency in women of childbearing age

(Brown et al. 2009). Zn absorption is influenced by various factors, i.e., binding

to a ligand secreted by the pancreas increases absorption, luminal amino acids bind

Zn and prevent its precipitation by substances such as phosphate and phytate,

whereas pregnancy, corticosteroids, and endotoxin all enhance absorption while

phytate, phosphate, iron, copper, lead, and calcium hinder absorption of Zn (Davies

1980). Zn deficiency is widespread and has a detrimental impact on growth,

neuronal development, and immunity (Plum et al. 2010). The reason behind Zn

deficiency is insufficient nutritional ingestion of Zn and Fe in majority of the cases

(Welch and Graham 2004; Cakmak et al. 2010). Conversely the concentration of a

number of minerals especially zinc, iron, iodine, and selenium is inherently poor in

plants as compared to animal-derived foods. As a consequence more than three

billion people globally suffer from micronutrient starvation (White and Broadley

2009: Cakmak 2008). As reported by the Alloway (2004), most of the wheat crop

was harvested on the zinc deficient which resulted in lower zinc content of wheat

grain. The development of high-yielding genotypes has aggravated this dilemma

(Zhao and McGrath 2009; Cakmak et al. 2010; Stein 2010). Moreover, the

processing of wheat significantly decreases the concentration of Zn as well as

other minerals, which promote Zn deficiency (Zhang et al. 2010; Kutman et al.

2011). To overcome this problem, improvement of Zn bioavailability in cultivated

soils may enhance Zn contents in the staple food grains which would possibly

diminish the major health risks attributable to this micronutrient deficiency. Plant

scientists are formulating different methodologies to tackle the zinc deficiencies in

human populations through fertilizer applications and/or by means of plant breed-

ing strategies to augment the absorption and/or bioavailability of zinc in grain

crops.
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9.2 Zinc Status of Soil

Most of the soils are either Zn deficient or contain Zn in fixed form, i.e., unavailable

to the plant. According to FAO reports, 50 % of the soils are deficient in Zn (FAO

2002). Deficiency of Zn is frequent in calcareous and neutral soils, paddy soils,

intensively harvested soils and inadequately drained soils, saline and sodic soils,

peat soils, soils with elevated level of phosphorus and silicon, sandy soils,

extremely weathered acid, and coarse-textured soils (Sillanpaa 1982; Alloway

2008). Zn deficiency may also be related with the nature of soil such as in

calcareous soils; Zn2+ may exist as low as 10�11–10�9 M and can reduce crop

growth (Hacisalihoglu and Kochian 2003). Approximately half of the agricultural

soils in China has been affected by zinc deficiency, while in India zinc-deficient

soils has engaged almost 50 % of the agricultural part, and the same is the situation

in Turkey (FAO 2002). In Pakistan, 70 % of agricultural land has been reported as

Zn deficient (Hamid and Ahmad 2001; Kauser et al. 2001).

Occurrence of Zn in soil is found as ZnS (sphalerite); further less frequent Zn-

containing mineral ores include smithsonite (ZnCO3), zincite (ZnO), zinkosite

(ZnSO4), franklinite (ZnFe2O4), and hopeite [Zn3(PO4)2∙4H2O]; however, avail-

ability of Zn from these sources depends on various factors. The natural sources of

zinc to soil include (a) chemical and physical weathering of parent rocks (Alloway

1995) and (b) atmospheric contribution of zinc to soils (e.g., volcanoes, forest fires,

and surface dusts) (Friedland 1990; International Zinc Association 2011).

Micronutrient uptake from the rhizosphere is the primary step for its accumula-

tion into the plant before translocation to seeds (Giehl et al. 2009). Plant roots

uptake Zn as Zn2+ cation which is constituent of synthetic and organic compounds

(Havlin et al. 2005; Oliveira and Nascimento 2006). Plants adsorb available zinc

from the soil solution in a reactive form. Accessible amount of zinc to plants is

controlled by the soil factors, e.g., the total zinc concentration, pH, organic matter,

clay and calcium carbonate, redox conditions, microbial activity in the rhizosphere,

soil moisture, concentrations of other trace elements, and concentrations of

macronutrients, especially phosphorus and climate (Alloway 2008). Zn supply is

mainly affected by the soil pH in soil pools; in view of the fact that this element is

readily adsorbed in exchange cation sites at over-neutral pH and made accessible at

low pH values (Broadley et al. 2007; Havlin et al. 2005). Cereals have very little Zn

concentration in grains as compared to animal-based foods or pulses. Currently,

Indian soils are Zn deficient particularly in wheat cropping system and it will

further decrease grain Zn concentration in cereals (Prasad 2005; Gupta 2005).

Generally cereal grain contains low concentration of Zn due to the existence of

anti-nutrition factor such as phytic acid (PA) which reduces the mineral bioavail-

ability (Pahlvan-Rad and Pressaraki 2009). The lesser bioavailability of soil zinc

directly affects grain zinc concentration and human health.
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9.3 Strategies to Overcome the Zinc Deficiency

To address the problem of Zn deficiency, micronutrients biofortification of grain

crops is getting increased interest in developing countries (Cakmak 2008; Bouis

and Welch 2010; Zhao and McGrath 2009). Several approaches have been

projected and practiced for fortification of cereals (Bouis 2003; Pfeiffer and

McClafferty 2007). Enhancing Zn concentration of cereal grains has been

recognized as an approach of tackling humane Zn deficiency (Pahlvan-Rad and

Pressaraki 2009). Plant scientists are formulating different methodologies to tackle

the Zn deficiencies in crops through fertilizer applications and/or by means of plant

breeding strategies to augment the absorption and/or bioavailability of Zn in grain

crops (Cakmak 2008; White and Broadley 2009). Various dietary factors, e.g.,

organic acids (citrate), amino acids (histidine and methionine), and chelators such

as EDTA, seem to support the bioavailability of zinc whereas fibers and some

minerals such as copper, iron, and calcium may decrease it in some situations

(Lonnerdal 2000). Recent studies have also demonstrated that enhanced Zn bio-

availability reduces the phosphorus and the phytic acid concentration in grain

(Cakmak et al. 2010). Absorption of Zn is improved by citric acid, malic acid,

lactic acid, and ascorbic acid. EDTA can assist to solubilize Zn from more insoluble

phytate-Zn compound, forming Zn-EDTA. Crop fortification is the best approach,

and it is aimed to increase the average Zn contents of wheat from 25 ppm in

Pakistan (HarvestPlus 2012). It involves two strategies: genetic biofortification

and agronomic biofortification.

9.3.1 Genetic Biofortification

Genetic biofortification comprises the developing varieties with increase Zn con-

tent of grain through conventional breeding and genetic engineering.

9.3.1.1 Breeding Practices

Altering the genetics of plants with the intention to produce desired characteristics

is known as plant breeding. Breeding and biotechnology are the most important

tactics of the plant biofortification. Genetic strategies are powerful approaches for

altering the nutrient balance in the food crop. In the earlier period, agronomists and

policy makers focused on yields only without considering the nutritional worth of

the crops, thus generating the mineral malnutrition in humans (Khoshgoftarmanesh

et al. 2009). It has been reported that increase in yield of crops is found to associate

for reduction in micronutrients. The zinc concentration is low in the edible tissues

of higher yielding varieties as compared to the low-yielding varieties (White and

Broadley 2009; Zhao and McGrath 2009; Monasterio and Graham 2000).
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Therefore, it is fundamental to believe whether any enhancement in tissue zinc

concentration is just the result of slower growth or low yields (White and Broadley

2011).

Despite the fact that the improvements achieved in development of novel

genotypes consisting of high zinc are admirable (Pfeiffer and McClafferty 2007;

Bouis and Welch 2010; Cakmak et al. 2010), there exist some issues with this

strategy. Similar to Zn, toxic metals like Cd can be translocated in the same

pathway (Intawongse and Dean 2006) and has a bioavailability that is much greater

than that of other heavy metals (Reeves and Chaney 2008). Moreover many ZIP

family proteins (metal transporter in plants) can transport Cd (Yang et al. 2009;

Assunc et al. 2010), which makes it difficult to ignore the risk in breeding programs.

The important issue associated with these breeding strategies is the instability of

newly incorporated Zn trait in different genotypes and relatively limited genotypic

variation for grain Zn concentration among wheat cultivars of cereals (Welch and

Graham 2004). It has been proved that Zn translocation in the wheat grain was

highly influenced by the genotype, climate, and their interactions (Gomez-Becerra

et al. 2010; Zhang et al. 2010). Secondly, it is a time-consuming approach and takes

several years to develop a biofortified variety (Cakmak 2008), and further breeding

program is also constrained by high cost and complexity of laboratory analysis

(Monasterio et al. 2007).

9.3.1.2 Transgenic Approach

Transgenic approach is also contributing in developing the biofortified crops.

Numerous transgenic food crops have been produced with the better zinc

concentrations in the edible parts than conventional cultivars. Studies have shown

that constitutive expression of transcription factors bZIP19 and bZIP23 could be

used to enhance the zinc accumulation in the edible parts of food crop plants

(Assunc et al. 2010). Different transport proteins of plasma membrane are the

targets for the manipulations of zinc concentrations in the different portions of

plants. These transport proteins make possible the uptake and sequestration of zinc

in the vacuole together with enzymes concerned in the synthesis of substances that

bind Zn2+ in the rhizosphere. Overexpressing genes encoding a transport protein of

root will specifically increase the uptake of Zn2+ in the root portion (Gustin et al.

2009). Wheat grain zinc concentration can be raised by the overexpression of NAC-

transcription factor (NAM-B1) which is responsible to increase the remobilization

of mineral elements from leaves to the developing grain and the senescence (Uauy

et al. 2006).
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9.3.2 Agronomic Practices

Different authors have evaluated agronomic strategies in the perspectives of both

global health and sustainable economic progress to increase the concentrations of

zinc in edible parts of major crops. Many studies have described profit for edible

crop production and human health by agronomic zinc biofortification of grain crops

(Cakmak 2008; White and Broadley 2009). Zinc fertilization of food crops signifies

a short-term remedy of ensuring Zn translocation (Cakmak 2008). Different

genotypes have different capability for the zinc accumulation. Zn is transportable,

and different fertilizers such as zinc sulfate (ZnSO4) can enhance the yield of grain

crops in zinc-deficient soils and can raise zinc concentration in the grain (White and

Broadley 2005). Combined application of zinc through soil as well as through foliar

considerably enhanced the concentration of zinc in wheat grain (Cakmak 2008;

Zhang et al. 2011; Zhao et al. 2011). Zn fertilization also diminishes the antinutrient

concentration in grain and decreases PA to Zn molar ratio, which is generally

expressed as an indicator of Zn bioavailability in diets (Cakmak et al. 2010). The

water soluble Zn is low in soil solution and even in Zn-contaminated soils (Knight

et al. 1997). Chelate-mediated bioavailability involves the utilization of synthetic

chelators, e.g., ethylenediaminetetraacetate (EDTA) (Piechalak et al. 2003; Sahi

et al. 2002). In nutrient-deficient ecosystems, the application of nitrogen–phosphor-

ous–potassium (NPK) fertilizers is necessary for obtaining the high yield of field

crops. These three macronutrients simultaneously augment root growth and result

in an elevated transport of micronutrients from the soil to the plant.

Conversely availability of zinc applied to the soil also depends on pH of soil,

e.g., NH4
+ causes acidification of the rhizosphere which increases transfer of Zn

from the soil to the plant, while NO3
– causes more alkalinity to the soil, dropping

this transfer rate. If the efficient absorption of minerals occurs, it can raise mineral

levels in leaves but not essentially in fruits or seeds, for the reason that the relative

efficiency of mineral transfer differs depending on the different parts of plant

(Hartikainen 2005). Application of Zn-containing fertilizers seem to be a quick

and easy solution to the Zn deficiency problem, but resource-poor farmers espe-

cially in developing countries cannot afford application of micronutrient fertilizers.

On the other hand, it is reported that several synthetic chelators are costly and cause

a hazard to the soil quality and groundwater (Kos and Lestan 2003). Plant growth

can be restricted and also influence the other soil organisms if large amount of metal

is applied to soils. Abandoned use of chemical inputs in cultivation has escalated

the expenses of production and damaged the soil, water, and biological resources

globally. There is also a dire need to improve Zn application methods in provisions

of form, dose, and effective time for the application of Zn fertilizers. Table 9.1

shows the comparative prospective of diverse strategies to assuage the

micronutrients deficiency in cereals.
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Table 9.1 Comparative look of the strategies used for the improvement of Zn deficiency in plants

Strategies Merits Demerits References

Chemical

fertilizations

• Short-time

solution

• Foliar zinc

application is

also effective

• Readily diminish

the phytic acid

conc. in the

grains

• Expensive

• Extremely reliant upon

crop and cultivar

• Not promising to target

edible parts

• Not eco-friendly

Cakmak (2008, 2009),

Galloway et al. (2008),

Smith et al. (2008)

Conventional

breeding

• Exploits inherent

properties of

crops

• Feasible to

improve the

zinc deficiency

• Increase

micronutrients

density in the

edible parts of

plants

• Depends on existing trait

diversity of gene pool

• Long-term strategy

• Traits might need to be

introgressed from wild

relatives

• Possible intellectual

property restraint

Raboy (2002), Bouis and

Welch (2010), Cakmak

et al. (2010), Pfeiffer

and McClafferty (2007)

Transgenic

techniques

• Rapid

• Independent of

gene pool

• Targeted

expression in

edible parts

• Applicable

directly to elite

cultivars

• Similar to zinc

translocation, many

ZIP family proteins can

transport toxic metals

(e.g., Cd)

• Regulatory landscape

• Socioeconomic and

political issues

concerning with

transgenic plants

• Possible intellectual

property restraint

Perfus-Barbeoch (2002),

Yang et al. (2009),

Assunc et al. (2010),

Johnson et al. (2011),

Lee et al. (2011),

Chowdhury et al. (2009)

Biofertilizer

application

• Economical

• Eco-friendly

• Increase macro-

and

micronutrient

uptake (P, Fe,

Zn, Si, etc.)

• Natural

• Helpful against

pathogenic

microorganisms

• Valuable for

bioremediation

• Significantly

increases the

yield of crops

• Limited shelf life

• Slow action

• Affected by environment

Hafeez et al. (2002, 2006),

Ahmed et al. (2011),

Bahrani et al. (2010),

Badr et al. (2009), Metin

et al. (2010), Kaewchai

et al. (2005)
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9.3.3 Plant Growth-Promoting Rhizobacteria as Zn Mobilizers

Plant growth-promoting rhizobacteria (PGPR) are one of the key factors that have

important function in sustainable agriculture. PGPR are a diverse group of bacteria

that can be found in the rhizosphere on root surfaces as well as in association with

roots (Maheshwari et al. 2012; Ahmad et al. 2008). These bacteria move around

from the bulk soil to the living plant rhizosphere and antagonistically colonize the

rhizosphere and roots of plants (Hafeez et al. 2001; Yasmin et al. 2004; Kloepper

and Schroth 1978). Soil bacteria which are important for plant growth are termed as

PGPR (Hafeez et al. 2001; Hayat et al. 2010; Yasmin et al. 2004). PGPR can be

alienated into two groups according to their relationship with the plants: symbiotic

bacteria and free-living rhizobacteria (Khan 2005). These are comprised of natu-

rally occurring beneficial microorganisms in soil that make available nutrients to

plants through several mechanisms by fixing atmospheric nitrogen, solubilizing the

nutrients fixed in soil, and by producing phytohormones (Hafeez et al. 2005; Jilani

et al. 2007; Jacobs et al. 2008; Yao et al. 2008; Siddiqui et al. 2008).

In addition to phosphate mobilization, they are responsible to play key role in

carrying out the bioavailability of soil phosphorous, potassium, iron, zinc, and

silicate to plant roots (Tariq et al. 2007; Ahmad 2007; Saravanan et al. 2011;

Abaid-Ullah et al. 2011). Many studies have revealed that inoculations of potent

strains of Zn mobilizer rhizobacteria increased the yield of field crops such as rice,

wheat, barley, and maize. Tariq et al. (2007) have described the effect of Zn-

mobilizing PGPR which significantly alleviated the deficiency symptoms of Zn

and regularly increased the total biomass (23 %), grain yield (65 %), and harvest

index in addition to Zn concentration in the grain of rice. Furthermore inoculation

of Zn-mobilizing PGPR had a notably positive impact on root weight (74 %), root

length (54 %), root area (75 %), root volume (62 %), shoot weight (23 %), and

panicle emergence index (96 %) and exhibited the maximum Zn mobilization

efficiency as compared to the un-inoculated control. Besides it was also confirmed

that PGPR strains can efficiently solubilize the Zn in liquid culture which was

accessible for rice plant. Interestingly, the yield data has indicated that the PGPR

contributed larger storage of assimilates in rice grains (Tariq et al. 2007). Ahmad

(2007) screened the best Zn-mobilizing strain out of fifty strains on the basis of

clear zone formation by plate assay isolated from maize rhizosphere. Similar work

accomplished by Yasmin (2011) determined the Zn-solubilizing ability of Pseudo-
monas sp. Z5 isolated from rhizosphere of rice plants. In a study of doctoral

dissertation, Abaid-Ullah et al. (2011) screened nine out of fifty Zn-solubilizer

PGPR qualitatively and quantitatively on different insoluble Zn ores such as ZnO,

ZnS, Zn (CO3)2, and Zn (PO4)3. A positive correlation of Zn solubilization was

found between qualitative and quantitative screening of Serratia sp. Likewise

higher Zn solubilization was noted with ZnO as compared to other insoluble ores.

The beneficial effect of the efficient Zn mobilizer Serratia sp. was tested in vivo

which significantly increased the yield and yield parameters of wheat crop at

various locations with respect to climatic conditions of Pakistan (Abaid-Ullah
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et al. 2010, 2011). Viable applications of PGPR are being tested and are repeatedly

promising; however, a good understanding of the microbial interactions that result

in plant growth increase will significantly raise the success rate of field applications

(Burr et al. 1984: Saravanan et al. 2011; Saharan and Nehra 2011).

9.3.3.1 Mechanism of Zinc Solubilization by PGPR

About 90 % of the soil’s Zn exists in insoluble form and is inaccessible for plant

uptake (Barber 1995). Solubilization of metal salts is an imperative feature of

PGPR as mobilized compound are accessible for the plants. Bacterial comparative

and functional genomics research has opened new avenues for exploring these

underlying mechanisms at biochemical and molecular level. Various studies have

been conducted to explore the mechanisms of Zn-solubilizing PGPR. Generally

PGPR solubilize the nutrients (essential trace elements) through acidification,

chelation, exchange reactions, and release of organic acids (Chung et al. 2005;

Hafeez et al. 2005). It is found that mobilization mechanism of Zn and iron possibly

involves the siderophore production (Tariq et al. 2007; Burd et al. 2000; Wani et al.

2007; Saravanan et al. 2011), gluconate, or the derivatives of gluconic acids, e.g., 2-

ketogluconic acid (Fasim et al. 2002), 5-ketogluconic acid (Saravanan et al. 2007a,

b), and various other organic acids by PGPR (Wani et al. 2007; Di Simine et al.

1998; Tariq et al. 2007) as described in Table 9.2. Soil–plant–microbe interactions

are complex, and there are lots of ways in which the outcome can influence the crop

vigor and yield (Pieterse et al. 2003; Hafeez et al. 2002). The precise mechanism

through which PGPR promote plant growth is not completely understood yet.

9.3.3.2 Screening of Zinc-Mobilizing PGPR

Zinc-mobilizing PGPR can be screened by plate assay, and their relative Zn-

solubilizing capacity can be quantified through atomic absorption spectrophotome-

ter (AAS) analysis. Screening of Zn-mobilizing PGPR can be made qualitatively by

agar plate assay. The solubilizing potential can be visualized by the zone formation

on the modified Bunt and Rovira (1955) media containing insoluble Zn ores (ZnO,

ZnPO4, ZnS, Zn (CO3)2, etc.). Quantification of Zn-mobilizing ability of PGPR is

also obtainable by LB media amended with different insoluble Zn ores (ZnO,

ZnPO4, ZnS, ZnCO3, etc.) through AAS (Hafeez and Hassan 2012; Abaid-Ullah

et al. 2010).

9.3.3.3 Formulation and Delivery of Zn-Solubilizing PGPR

Biofertilizer formulation is an industrial art of converting a promising laboratory-

proven bacterium into a commercial field product (Bashan 1998; Hafeez et al.

2006). Formulations of PGPR are composed of the active component, i.e.,
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rhizobacteria which are carried by an inert stuff used to deliver the active

ingredients to the target (Hafeez and Hassan 2012). These microbial inoculums

not only defeat loss of viability for the period of storage but also have longer shelf

life and strength over a range of temperature�5 to 30 �C as in the marketing supply

change (Hafeez 2009; Bashan 1998). The PGPR are formulated in solid carrier

materials and commercialized with different trade names throughout the world. The

biofertilizers with trade names Azotobakterin™ consisting of Azotobacter
chroococcum and Phosphobacterin™ consisting of Bacillus megaterium var.

phosphaticum are being used as seed treatment and soil drenching. The liquid-

based formulations of biofertilizers such as Nitragin™ containing Rhizobia cells and
Nitro™ containing Azotobacter cells are also being used as seed treatment in the

USA since 1885. Solid formulation-based biofertilizer Gmax™ and Nitromax™

consisting of Azotobacter cells and Azospirillum cells, respectively, are being

commercialized.

In Pakistan, mixture of potent PGPR has been formulated in sugarcane filter cake

and marketed with the trade name of Biopower as nitrogen and phosphatic fertilizer
for different field crops by National Institute for Biotechnology and Genetic

Engineering (NIBGE), Faisalabad, Pakistan, in collaboration with public sector.

Table 9.2 Zn-mobilizing plant growth-promoting rhizobacteria (PGPR) producing various

compounds helpful for plant growth

No.

Zinc-mobilizing

PGPR Plant/source PGPR traits References

1. Pseudomonas
fluorescens

Forest soil Zn, P solubilizer, citric acid, and

gluconic acid production

Di Simine

et al.

(1998)

2. Pseudomonas
aeruginosa

Air environment

of a tannery

Zn solubilizer, low gluconic acid but

higher amount of 2-ketogluconic

acid production

Fasim et al.

(2002)

3. Gluconacetobacter
diazotrophicus

Saccharum
officinarum

Zn solubilizer, 5-ketogluconic acid

production

Saravanan

et al.

(2007a,

b)

4. Rhizobia spp. Pisum sativum Zn solubilizer/tolerant,

phytohormones production

Wani et al.

(2008)

5. Pseudomonas
sp. PsM6, P.
jessenii PjM15

Ricinus communis Zn, Ni, and Cu mobilizers; ACC

deaminase, siderophore, and IAA

production; biosorption

Rajkumar

and

Freitas

(2008)

6. Flavobacterium sp. Orychophragmus
violaceus/
sewage sludge

Zn mobilization and accumulation He et al.

(2010)

7. Pseudomonas
sp. Z5

Oryza sativa Zn solubilization Yasmin

(2011)

8. Serratia sp. Triticum aestivum Zn and P solubilization Abaid-

Ullah

et al.

(2011)
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Certain other phosphate-solubilizing PGPR have been formulated in humic acid

carrier by the COMSATS Institute of Information Technology, Islamabad,

Pakistan, and being marketed with the trade name of Humiphos and Biophos by
the private sector; AURIGA Chemical Enterprises, Lahore, Pakistan (Khan et al.

2010; Hafeez and Hassan 2011; Hafeez and Hassan 2012). Zn-mobilizing PGPR

inoculants exploited as biofertilizers can accelerate rehabilitation of degraded land

and improvement of soil fertility, enhance survival and growth of plants, increase

grain yield, lower malnutrition rates, and reduce dependence on chemical fertilizers

(Hafeez et al. 2001). Moreover biofertilizers are economical, eco-friendly, and its

use can augment crop productivity (Hafeez et al. 2002). Hence biofertilizer formu-

lation for Zn deficiency in cereal crops may represent a natural, environment-

friendly, and inexpensive alternate to replace already existing chemical fertilizer

hazard. Using Zn-solubilizing rhizobacteria together with all other beneficial traits

will be a key advantage for the formulation of effective biofertilizers. It will be their

binary beneficial nutritional effect resulting together from phosphate solubilization,

N2-fixation (Zaidi and Mohammad 2006; Gull et al. 2004), and their well-

documented synergistic interactions with arbuscular mycorrhizal fungi

(Ordookhani et al. 2010). The exploitation of PGPR inoculants as biofertilizers

and/or antagonists of phytopathogens offers a promising alternative to chemical

fertilizers and pesticides. It was practically determined that the application of PGPR

(Pseudomonas fluorescens and Paenibacillus polymyxa) to rice plant enhanced the

induced systematic resistance in a pot experiment (Hafeez and Naureen 2011;

Naureen et al. 2009; Umashankari and Sekar 2011).

Current trends in agriculture are focused on the reduction of the pesticides and

inorganic fertilizers utilization, forcing the study for alternative ways to progress a

more sustainable agriculture (Kloepper et al. 1989; Mahdi et al. 2010a, b; Hafeez

and Gull 2009). The outcome of the studies has shown that a Bacillus sp. (Zn-

solubilizing bacteria) can be exploited as biofertilizer for zinc or in soils where

native zinc is elevated or in conjunction with insoluble cheaper zinc compounds

like zinc oxide (ZnO), zinc carbonate (ZnCO3), and zinc sulfide (ZnS) as an

alternative of expensive zinc sulfate (Mahdi et al. 2010a, b). Subsequent studies

of PGPR have shown that several best strains are multifunctional, and secondly,

PGPR traits are frequently disseminated among various different species and

genera of microorganisms, many of which are native members of the soil microbial

community. Generally individual strains differ significantly in performance. Native

PGPR can affect the performance of introduced PGPR inoculants comparatively.

Hence, lack of information about the background PGPR function; it is not easy to

predict the response to soil inoculations. A lot of PGPR frequently solubilize

nutrients (phosphorus, iron, zinc, silicate, etc.), produce auxins which stimulate

root development, and produce siderophore and antibiotics that may help in inhibi-

tion of root infection. During environmental stress the plants produce ethylene or

hydrogen cyanide and reactive oxygen species (ROS) that may be degraded by

substances (enzymes) produced by these PGPR.
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9.4 Conclusion

Zn deficiency is a serious constraint causing a numbers of health disorders in

humans. The micronutrient deficiency particularly exists for the inhabitants of

developing countries where cereal crops are consumed as staple food; in addition

the prevalent high-yield cultivars in the underdeveloped regions are zinc deficient.

Such mal-conditions are rigorous in the areas with calcareous and sandy soil due to

their high vulnerability to micronutrient deficiency. More than 50 % soil is zinc

deficient according to various survey reports for countries like India, Pakistan, and

China. Monotonous food style of consumers in developing countries has focused

the researchers to improve the micronutrient contents in the respective staple food

crops. Existing strategies like chemical fertilization, agronomic practices, and

transgenic plants development for the improvement of the Zn contents of food

crops seem to have potential; however, these engaged practices have raised the

environmental pollution, high-cost, socioeconomic, and political issues. Use of

PGPR for the improvements of micronutrients deficiency is promising due to its

ecological, economic, and eco-friendly nature. The net increase in nutrient contents

and yield has been reported by the recent studies in the last decades for different

grain yielding crops. The application of microbial technologies in agriculture is

presently growing quite rapidly with the recognition of novel bacterial strains,

which are additionally effective in promoting plant growth. Exploitation of the

multifunction PGPR (P, Fe, Zn, Si solubilizer, production of phytohormones,

bacteriocin, etc.) will be a good candidate for the formulation of effective

biofertilizers. Thus, in the near future, promising use of biofortification is the best

solution for preventing micronutrients deficiency and enhancing sustainable

agriculture.
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Ordookhani K, Khavazi K, Moezzi A, Rejali F (2010) Influence of PGPR and AMFon antioxidant

activity, lycopene and potassium contents in tomato. African J Agric Res 5(10):1108–1116

Pahlvan-Rad MR, Pressaraki M (2009) Response of wheat plant to zinc, iron and manganese

applications and uptake and concentration of zinc, iron and manganese in wheat grains.

Commun Soil Sci Plant Anal 40:1322–1332

Perfus-Barbeoch L (2002) Heavy metal toxicity: cadmium permeates through calcium channels

and disturbs the plant water status. Plant J 32:539–548

Pfeiffer WH, McClafferty B (2007) Harvest plus: breeding crops for better nutrition. Crop Sci

47:88–105

Piechalak A, Tomaszewska B, Baralkiewics D (2003) Enhancing phytoremediative ability of

Pisum sativum by EDTA application. Phytochemistry 64:1239–1251

Pieterse CMJ, Pelt JA, Verhagen BWM, Jurriaan T, Wees SCM, Léon-Kloosterziel KM, Loon LC
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Chapter 10

Functional Aspect of Phosphate-Solubilizing

Bacteria: Importance in Crop Production

Mohammad Saghir Khan, Ees Ahmad, Almas Zaidi, and Mohammad Oves

10.1 Introduction

Phosphorus (P) is one of the major macronutrients essentially required by plants

and plays a critical role in photosynthesis, energy transfer, signal transduction,

macromolecular biosynthesis, and respiration (Fernandez et al. 2007; Ahemad et al.

2009). After uptake by plants, P also stimulates root development and facilitates

flower formation and quality and quantity of fruits and seed formation (Ahemad

et al. 2009). Additionally, sufficient P concentration may increase the resistance

ability of plants to diseases and adverse conditions. On the other hand, majority of

the soils around the world are deficient in P, and hence, only 1–5 % of total soil P is

available to plants (Molla and Chaudhury 1984). As a result of the acute deficiency,

P is, therefore, applied in agronomic operations from external sources in order to

fulfill the phosphatic demands of plants. The use of consistent and sometimes

excessively higher rates of chemicals including phosphatic fertilizers in current

high-input agricultural practices has, however, resulted in the damaging effects on

composition and functions of rhizosphere microbes. Subsequently, the fertility of

soil is disturbed. These factors together lead to losses in crop production. The

reduction in overall growth of plants following excessive application of P occurs

primarily due to poor P uptake ability of plants and rapid fixation/sorption ability of

P with soil constituents as calcium, aluminum, and iron phosphate (Lindsay et al.

1989; Vassilev and Vassileva 2003; Tao et al. 2008). In order to reduce chemical

addition to soils and spiraling cost, and undeniable deleterious environmental

impacts of P fertilizers, there is an urgent need to find a suitable/feasible alternative

to chemical fertilizers. In this regard, microbial communities capable of

transforming insoluble/bound P into soluble and available forms, collectively called
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as phosphate-solubilizing microorganisms (PSM), may be applied to overcome

such barriers. Considering these, many researchers around the world have isolated

PS bacteria from different soils (Perveen et al. 2002; Pérez et al. 2007; Chen et al.

2008; Khan et al. 2009a; Ahemad and Khan 2010; Hui et al. 2011; Xiang et al.

2011) and tested their ability as inoculants to see whether they have any impact on

plant growth or not (Zaidi 1999; Zaidi et al. 2003, 2009a; Chen et al. 2006; Kumari

et al. 2009; Khan et al. 2010). Interestingly, among microbiological option, many of

PS bacteria belonging largely to the genera pseudomonads (Behbahani 2010;

Ahemad and Khan 2011a), bacilli (Wani et al. 2007a; Behbahani 2010; Sanjotha

et al. 2011; Yadav et al. 2011), rhizobia (Abd-Alla 1994; Alikhani et al. 2006; Abril

et al. 2007; Chandra et al. 2007; Marra et al. 2011), and Azotobacter (Ivanova et al.
2006; Yi et al. 2008) when used as phosphatic inoculants have been found effective

and more practical in sustainable agricultural practices for enhancing crop produc-

tion by providing available forms of P to different plants (Bojinova et al. 2008;

Adesemoye and Kloepper 2009; Oliveira et al. 2009; Yu et al. 2011) in different

agro-ecological niches (Zaidi et al. 2003; Khan et al. 2007). In addition to P, the

PSM including bacteria (Zaidi et al. 2009b; Zhu et al. 2011) and fungi (El-Azouni

2008; Khan et al. 2010) increase the growth of plants by other mechanisms like N2

fixation, by providing various growth-regulating substances to plants (Wani et al.

2007a; Mittal et al. 2008; Ahemad and Khan 2011b), such as siderophores (Oves

et al. 2009; Ahemad and Khan 2012) and antibiotics (Lipping et al. 2008; Khan

et al. 2010), and by protecting plants from pathogen damage (Hamadali et al. 2008).

Documented results have shown that microphos (microbial cultures with PS activ-

ity) having such vast and varied activities when used either alone (Chen et al. 2008;

Poonguzhali et al. 2008) or as mixture with other plant growth-promoting

rhizobacteria (PGPR), a modifier of soil fertility and facilitator of plant establish-

ment (Zaidi and Khan 2006; Wani et al. 2007b; Vikram and Hamzehzarghani 2008;

Khan et al. 2009a, b) increased the biological and chemical characteristics of plants

grown in various agro-ecosystems (Rodrı́guez et al. 2006; Khan et al. 2009b;

Ahemad and Khan 2011b).

10.2 Mechanism of P-Solubilization and Development of

Inoculant: A Brief Account

Naturally abundant yet unavailable insoluble forms of P such as tricalcium phos-

phate (Ca3PO4)2, aluminum phosphate (Al3PO4), and iron phosphate (Fe3PO4) may

be converted to soluble P by P-solubilizing bacteria inhabiting different soil

ecosystems (Song et al. 2008; Khan et al. 2010; Ahemad and Khan 2011a). Soil

microorganisms in this regard have generally been found more effective in making

P available to plants from both inorganic and organic sources by solubilizing (Toro

2007; Wani et al. 2007b) and mineralizing difficultly available P (Bishop et al.

1994; Ponmurugan and Gopi 2006), respectively. Several workers have
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documented their findings in order to better understand as to how the microbial

populations including bacteria cause the solubilization of insoluble P (Cunningham

and Kuiack 1992; Illmer and Schinner 1995; Buch et al. 2008; Song et al. 2008). Of

the various strategies adopted by microbes, the involvement of low molecular mass

organic acids (OA) secreted by microorganisms has been well recognized and a

widely accepted theory as a principal means of P solubilization (Maliha et al. 2004).

The OA produced by bacterial cultures (Table 10.1) in the natural environment or

under in vitro conditions chelate mineral ions or decrease the pH to bring P into

solution (Maliha et al. 2004; Pradhan and Shukla 2005). Consequently, the acidifi-

cation of microbial cells and their surrounding leads to the release of P ions from the

P mineral by H+ substitution for Ca2+ (Goldstein 1994). However, there are also

reports which suggest that insoluble P could be transformed into soluble forms of P

without OA production by microbes (Asea et al. 1988; Illmer and Schineer 1992,

1995; Chen et al. 2006). For example, Altomare et al. (1999) while investigating the

P-solubilizing ability of plant growth-promoting and biocontrol fungus

Trichoderma harzianum T-22 did not record OA production (rock P was used as

insoluble P source) under in vitro condition. It was concluded from this study that

the insoluble P could be solubilized by mechanisms other than acidification process.

Also, the fungal-solubilizing activity was credited both to chelation and to reduc-

tion processes, which may be useful in the management of phytopathogens. Apart

from the OA theory, some of the inorganic acids (Reyes et al. 2001; Richardson

2001) such as HCl (Kim et al. 1997), nitric acid, and sulfuric acids (Dugan and

Lundgren 1965) produced by chemoautrophs and the H+ pump, for example, in

Penicillium rugulosum, have also been reported to solubilize the insoluble P (Reyes

et al. 1999). The inorganic acids convert tri-calcium phosphate to di- and monoba-

sic phosphates with the net result of an enhanced availability of the element to

plants.

The advent of P-solubilizing potentials among renewable resources like the

bacterial populations has been one of the most important biological traits that

have resulted in reducing the dependence on synthetic P fertilizers and conse-

quently preserving soil fertility and environmental safety from chemical toxicity.

And therefore, the use of PS bacteria as an alternative to chemical fertilizer has

attracted greater attention of agronomists than microbiologists in recent times. In

order to develop microphos, organisms with P-solubilizing activity may be isolated

from either conventional or derelict environment using standard methods. The

isolated bacterial cultures showing greatest P-solubilizing activity (Fig. 10.1) on

any media designed especially to select P-solubilizing bacteria, for example,

Pikovskaya medium (Pikovskaya 1948) are selected and used to develop as micro-

bial inoculants following standard procedure (Fig. 10.2). Subsequently, the

microphos are tested both under pot house and field environment using seed

treatment, seedling dipping, or soil application methods for their ultimate transfer

to practitioner/farmers for application in agricultural practices as a cheap and viable

phosphatic option.
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10.3 Functional Diversity Among Phosphate-Solubilizing

Bacteria

Principally, P-solubilizing microorganisms in general are widely known to increase

the overall performance by providing soluble P to plants in different production

systems. However, they also benefit plants by other mechanisms (Fig. 10.3). They

exhibit multifunctional properties (Vikram et al. 2007a; Singh et al. 2010;

Vassileva et al. 2010; Yadav et al. 2011), for example, they are known to synthesize

siderophores (Matthijs et al. 2007; Hamadali et al. 2008; Viruel et al. 2011),

Fig. 10.2 Isolation, selection and formulation of PS bacteria (Modified from Zaidi et al. 2009a, b)

Fig. 10.1 Halo formation by phosphate-solubilizing bacteria on Pikovskaya agar plate
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indoleacetic acid (IAA), and gibberellic acid (Sattar and Gaur 1987; Souchie et al.

2007; Viruel et al. 2011). Phosphate-solubilizing bacteria such as Gram-negative

P. fluorescens, P. aeruginosa, and Chromobacterium violaceum also secretes

cyanide, a secondary metabolite which is ecologically important (Siddiqui et al.

2006; Wani et al. 2007a), and gives a selective advantage to the producing strains

(Rudrappa et al. 2008). Besides strict P solubilizers, a few genera of rhizobia, for

example, Bradyrhizobium and Rhizobium, have also been found to solubilize P and

secrete IAA (Pandey and Maheshwari 2007; Badawi et al. 2011). Interestingly, the

ability of PSB, for example, Serratia marcescens, to secrete siderophores and

cyanide is critical in managing various diseases inflicted by the plant pathogens

(Vassilev et al. 2006) and indirectly promoting the plant growth (Badawi et al.

2011). Some of the compounds synthesized by P-solubilizing bacteria with possible

effect on plant growth promotion are listed in Table 10.2.

Fig. 10.3 An illustration depicting functional diversity among PS bacteria (Modified from Oves

et al. 2009; photograph of PSB, courtesy M. Oves)
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Table 10.2 Examples of plant growth-promoting substances released by phosphate-solubilizing

bacteria

Phosphate-solubilizing

bacteria Plant growth-promoting substances Reference

Pseudomonas fluorescens, P.
putida

IAA, siderophore, ACC deaminase Zabihi et al. (2011)

Serratia nematodiphila IAA, siderophore, HCN Dastager et al.

(2011a)

Pontibacter niistensis IAA, HCN, ACC deaminase and

siderophore

Dastager et al.

(2011b)

Klebsiella spp. IAA, siderophore, HCN, ammonia, EPS Ahemad and Khan

(2011b)

Pantoea agglomerans IAA Mishra et al. (2011)

Arthrobacter, Bacillus IAA, antifungal activity, HCN, NH3 Banerjee et al.

(2010)

Paenibacillus alvei, Bacillus
cereus

IAA, siderophore

Pantoea IAA, siderophore, antifungal activity Taurian et al. (2010)

Pseudomonas aeruginosa IAA, siderophore, antifungal activity,

HCN, EPS

Ahemad and Khan

(2010)

P. mendocina, P. stutzeri and
P. putida

IAA, gibberellic acid, trans-zeatin

riboside and abscisic acid

Naz and Bano

(2010)

Enterobacter aerogenes, E.
cloacae, E. asburiae

IAA, siderophore, HCN Deepa et al. (2010)

P. alvei IAA Hassen and

Labuschagne

(2010)

Pseudomonas sp. ACC deaminase, IAA, siderophore Poonguzhali et al.

(2008)

Serratia marcescens IAA, siderophore, HCN Selvakumar et al.

(2008)

Acinetobacter sp.,
Pseudomonas sp.

ACC deaminase, IAA, antifungal activity,

N2-fixation

Indiragandhi et al.

(2008)

Enterobacter sp. ACC deaminase, IAA, siderophore Kumar et al. (2008)

Burkholderia ACC deaminase, IAA, siderophore Jiang et al. (2008)

Pseudomonas jessenii ACC deaminase, IAA, siderophore Rajkumar and

Freitas (2008)

P. aeruginosa ACC deaminase, IAA, siderophore Ganesan (2008)

Azotobacter sp., Pseudomonas
sp., Bacillus sp.

IAA, siderophore, antifungal activity,

ammonia production, HCN

Ahmad et al. (2008)

Fluorescent pseudomonas IAA, siderophores, HCN, antifungal

activity

Shweta et al. (2008)

Pseudomonas vancouverensis IAA, HCN, siderophore, antifungal

activity

Mishra et al. (2008)

Bacillus sp. IAA, siderophores, ammonia production,

HCN

Wani et al. (2007a,

2007b)

Klebsiella oxytoca IAA, nitrogenase activity Jha and Kumar

(2007)
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10.4 Importance of Phosphate-Solubilizing Bacteria in Crop

Improvement

Phosphate-solubilizing bacteria among biological materials are one of the most

important soil constituents which play a central role in maintaining soil fertility.

Consequently, they support plants to grow in a well-directed manner because

starting from seed germination until the seed production or maturation stages,

plants remain in close proximity with PSB. Considering the vast and varied

activities, researchers around the world have either attempted or included the use

of this novel group of economically feasible biological materials in agronomic

operation for sustainable crop production with variable results (Tables 10.3 and

10.4). The role of PSB in maintaining soil fertility vis-a-vis increasing crop

productivity is briefly discussed in the following section.

10.4.1 Phosphate Solubilizers–Legume Interactions: Current
Perspective

The sole or composite application of PSB for raising legume production has

received considerable attention worldwide (Zaidi et al. 2004; Vikram et al.

2007b; Shaharoona et al. 2008; Collavino et al. 2010). Considering the success of

PSB application achieved so far in agronomic practices, we have attempted in the

following section to focus on the role of PSB exclusively in the improvement of

legumes grown in different agro-ecosystems.

10.4.1.1 Impact of Monoculture of PSB on Legume Improvement

Phosphate-solubilizing fluorescent pseudomonads isolated from the groundnut

(Arachis hypogaea) rhizosphere, when used as phosphatic biofertilizer against

groundnut plants, enhanced germination by 30 % while it increased grain yield

by 77 %. To test the biocontrol potential of this PSB strain, a plant pathogen

Macrophomina phaseolina alone was also included, which, however, decreased

the grain yield substantially by 57 %. The increase in the yield of ground following

PSB application, however, suggested that Pseudomonas strains used in this study

had two basic traits (1) pseudomonads acted as biocontrol agent against

M. phaseolina and (2) that they provided available form of P and consequently

enhanced the yield of groundnut (Shweta et al. 2008). Dey et al. (2004) in yet

another study observed a significantly higher pod yields, haulm yield, and nodule

dry weight in PSB (P. fluorescens)-inoculated peanut plants compared to those

recorded for un-inoculated plants grown in pots and field trials. The seed bacteriza-

tion also resulted in higher N and P contents in soil. In addition, the pod yields were

increased by 23–26 %; other plant characteristics such as root length, pod number,
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100-kernel mass, shelling out-turns, and nodule numbers were also increased

following bacterial inoculation. Seed treatment with P. fluorescens also depressed

incidence of soil-borne fungal diseases, like collar rot and charcoal rot of peanut

(Bhatia et al. 2008), caused by A. niger. While considering the overall improvement

in inoculated peanut, it was inferred that the increase was due to (1) the synthesis of

IAA, ACC-deaminase and siderophore, and (2) antifungal activity against various

fungal pathogens. Similar increase in the biological and chemical characteristics

and quality of pea (Pisum sativum) and chickpea (Cicer arietinum) under both

controlled conditions and field environment following P-solubilizing, auxin, ACC

deaminase, ammonia, and siderophore-producing strains of Acinetobacter

Table 10.3 Examples of phosphate solubilizing bacteria used for raising crop production

Phosphate-solubilizing bacteria Crop tested Botanical name Reference

Pantoea agglomerans Maize Zea mays Mishra et al.

(2011)

Pseudomonas fluorescens, B. cepacia,
Aeromonas vaga

Mung bean Vigna radiata Jha et al. (2012)

Pseudomonas fluorescens, P. putida Wheat Triticum aestivum
L.

Zabihi et al. (2011)

Bacillus Rice Oryza sativa Panhwar et al.

(2011)

Serratia nematodiphila black

pepper

Piper nigrum L Dastager et al.

(2011a)

Pseudomonas chlororaphis, Bacillus
cereus and P. fluorescens

Walnut Juglans siggillata
L

Yu et al. (2011)

Enterobacter aerogenes Kidney bean Phaseolus
vulgaris

Collavino et al.

(2010)

Pseudomonas, Bacillus Alfalfa Medicago sativa
L

Guiñazú et al.

(2010)

Pantoea Peanut Arachis hypogaea Taurian et al.

(2010)

P. aeruginosa Green gram Vigna radiata (L.)

Wilczek

Ahemad and Khan

(2010)

E. aerogenes, E. cloacae, E. asburiae Cowpea Vigna unguiculata
(L.)

Deepa et al. (2010)

Pseudomonas synxantha, Burkholderia
gladioli, Enterobacter hormaechei and
Serratia marcescens

Chinese

aloe

Aloe barbadensis Mamta et al.

(2010)

Bacillus megaterium var. phosphaticum Flax Linum
usitatissimum
L

El-Nagdy et al.

(2010)

Bacillus simplex, B. megaterium, B.
cereus, Paenibacillus alvei

Tomato,

wheat

Lycopersicon
esculentum
Mill.

Hassen and

Labuschagne

(2010)

B. amyloliquefaciens and B. pumilus Tomato Solanum
lycopersicum

Adesemoye et al.

(2009)

B. megaterium, B. subtilis, Pseudomonas
corrugate

Rice Oryza sativa Trivedi et al.

(2007)
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Table 10.4 Examples of sole and composite inoculation effects of phosphate-solubilizing bacte-

ria on biological and chemical characteristics of different plants

Organisms applied

Crop Plant attributes ReferenceSole Composite

P. agglomerans
NBRISRM

Maize,

chickpea

Shoot length, leaves,

seed, N, P and K

uptake

Mishra et al.

(2011)

P. chlororaphis,
P. fluorescens,
B. cereus

Walnut Plant height, root and

shoot dry weight, P,

N and K uptake

Yu et al. (2011)

P. fluorescens,
P. putida

Wheat Plant height, tillers,

number of grains/

spike, 1,000-grain

weight, grain and

straw yield, N, P and

K uptake

Zabihi et al.

(2011)

Enterobacter sp Cowpea Root and shoot length,

dry biomass,

seedling length

Deepa et al.

(2010)

P. fluorescens,
Pantoea

Peanut Plant length, Dry

weight, N and P

content

Taurian et al.

(2010)

P. aeruginosa Green gram Plant height, plant dry

weight, nodulation,

chlorophyll,

leghaemoglobin, N

and P content, seed

yield

Ahemad and

Khan (2010)

Citrobacter,
Pantoea,
Klebsiella and
Enterobacter

Pigeon pea Shoot P content, dry

shoot/root ratio, dry

weight

Patel et al.

(2010)

Bacillus sp. Chickpea Root and shoot length,

nodulation, dry

weight

Wani and Khan

(2010)

Burkholderia
gladioli,
Enterobacter
aerogenes and
Serratia
marcescens

Stevia
rebaudiana

Shoot and root length,

leaf and stem dry

weight, shoot

biomass and

glycoside contents

Mamta et al.

(2010)

A. calcoaceticus
SE370

Cucumber,

Chinese

cabbage

and Crown

daisy

Shoot length, plant

height, dry weight

Kang et al

(2009)

Pseudomonas
aeruginosa

Sinorhizobium
meliloti

Mustard Root and shoot fresh

weight and dry

weight, yield

Maheshwari

et al. (2011)

Pontibacter
niistensis

Cowpea Root and shoot weight,

dry weight, seedling

growth

Dastager et al.

(2011b)

(continued)
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rhizosphaerae and Mesorhizobium mediterraneum (PECA21) has been reported

(Peix et al. 2001; Gull et al. 2004; Gulati et al. 2009). Likewise, inoculation of green

gram [Vigna radiata (L.) Wilczek] seeds with PSB demonstrated an extensive

nodulation and increased shoot dry matter and total dry matter, P-content, and P

uptake in green gram plants 45 days after sowing relative to either rock phosphate

(RP) or single super phosphate (SSP) application (Vikram and Hamzehzarghani

2008).

10.4.1.2 Synergistic Effect of Phosphate-Solubilizing Bacteria with Other

PGPR/AM-Fungi

Even though P is available in plenty in many soils, application of phosphatic

fertilizers is essentially required to cover up losses caused due to P fixation by

soil constituents and phosphate runoff in P-loaded soil (Goldstein 1986; Del

Campillo et al. 1999). On the contrary, the use of phosphate solubilizers to provide

exclusively P to plants and also along with other compatible PGPR for increasing

quality of crops have been studied intensively (Zaidi and Khan 2006; Afzal et al.

2010; Zaidi et al. 2010). The beneficial microbes involved in P solubilization in

addition to P can also enhance plant growth by improving the efficiency of BNF, by

Table 10.4 (continued)

Organisms applied

Crop Plant attributes ReferenceSole Composite

P. fluorescens Burkholderia
cepcia,
Aeromonas
vaga

Mung bean Root and shoot length,

dry weight, leaf area,

photosynthetic yield,

P content in leaf

Jha et al. (2012)

Pseudomonas Bacillus Strawberry Fruit yield and weight,

vit. C, reducing

sugar

Esitken et al

(2010)

Bacillus,
Pseudomonas

Sinorhizobium
meliloti

Alfalfa Root and shoot dry

weight, root length,

N content in shoot

Guiñazú et al

(2010)

Paenibacillus
alvei

Bacillus
simplex,
Bacillus
cereus

Wheat Shoot and root biomass

and total root length

Hassen and

Labuschagne

(2010)

Bacillus
megaterium

Bacillus
simplex,
Bacillus
cereus

Tomato Shoot and root biomass

and total root length

Hassen and

Labuschagne

(2010)

P. putida B. japonicum Soybean Root and shoot dry

weight, nodulation

Rosas et al.

(2006)

P. putida S. meliloti Alfalfa Root and shoot dry

weight, nodulation

Rosas et al.

(2006)
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accelerating the availability of other trace elements, and by production of

phytohormones (Wani et al. 2007a). Accordingly, increase in yield of various

legumes have been observed following seed or soil inoculation with N2-fixing

organisms, PSB, or PSB when used with nodule bacteria (Maheshwari et al.

2011) and AM fungus (Zaidi and Khan 2006; Khan and Zaidi 2007).

Like other PGPR, PSB within soil forms a close relationship with microbes and

play important role in improving crop yields additively or synergistically. For

example, the composite application of N2-fixing Sinorhizobium meliloti and

P-solubilizing bacterium Bacillus sp. M7c and Pseudomonas sp. FM7d signifi-

cantly enhanced the N-fixing efficiency of alfalfa plants. Of these, Pseudomonas
sp. FM7d resulted in enhanced dry matters production in plant organs such as root

and shoot, length and surface area of roots, number and symbiotic properties of

alfalfa (Medicago sativa L.) plants (Guiñazú et al. 2010). It was concluded from this

study that S. meliloti B399 and Bacillus sp. M7c proved effective for developing

mixed phosphatic inoculants. In a similar experiment, Bansal (2009) observed a

dramatic increase in nodulation and grain yield of mung bean treated simulta-

neously with Rhizobium, PGPR, and PSB. The tripartite treatments were followed

by dual inoculation of Rhizobium with PGPR and Rhizobium alone in terms of

nodulation and grain yield increases in kharif seasons. The pooled analysis also

gave significantly highest number of nodules/plant (21/plant), dry weight of

nodules/plant (87.7 mg), and grain yield (12.9 q/ha) following combined inocula-

tion of Rhizobium, PGPR, and PSB. The increase in yield (12 q/ha) was at par with

Rhizobium used with PGPR. In a follow-up study, Dutta and Bandyopadhyay

(2009), while conducting a field experiment during the winter seasons, observed

that P and biofertilizers, phosphobacterin (Pseudomonas striata) and co-inoculation
of Rhizobium with phosphobacterin, when applied together, enhanced the early

vegetative growth, symbiotic properties like nodule production and excessive

synthesis of leghaemoglobin in nodules, nitrogenase activity (NA), and yield

components such as seed yields, harvest index (HI), and P uptake by chickpea

cultivar Mahamaya-2 plants grown in entisol (laterite soil) under rainfed

conditions. Of the various combination treatments, seed inoculation of

phosphobacterin with Rhizobium was significantly better than that of rest of the

treatments.

When P (26.2 kg/ha) was also added to the mixture of Rhizobium and

phosphobacterin, the biological and chemical properties of chickpeas were further

improved relative to other levels of P used with biofertilizer. In other parts of the

world like Erzurum (29�550N and 41�160E with an altitude of 1,950 m), Turkey, a

similar investigation was carried out by Elkoca et al. (2008) where they used

Rhizobium, N2-fixing Bacillus subtilis (OSU-142), and P-solubilizing

B. megaterium (M-3) to inoculate chickpea plants. Under the field trials, single,

dual, and triple inoculations with Rhizobium, OSU-142, and M-3 significantly

increased plant height, shoot, root, and nodule dry weight, N%, chlorophyll content,

pod numbers, seed yield, total biomass yield, and seed protein content compared

with the control treatment, equal to or higher than N, P, and NP treatments.

Interestingly, the mixture containing Rhizobium was comparatively better in
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terms of nodulation than the sole application of Rhizobium. Increase in the seed

yield under different inoculation treatments ranged between 18 % (Rhizobium) and
31 % (Rhizobium with OSU-142 and M-3) over the control whereas N, P, and NP

applications corresponds to an increase of 27 %, 11 %, and 33 %, respectively. Dual

and triple inoculations in general were more effective than other treatments which

could probably be due to P activity of Enterobacter.
Coinoculation with rhizosphere PSM and AMF of soils with high phosphate-

fixation capacity may overcome the limitation mentioned on the effectiveness of

PSM in enhancing plant P uptake. First, mycorrhizal plants can release higher

amounts of carbonaceous substance in to rhizosphere (Linderman 1988; Rambelli

1973) than non-mycorrhizal plants. Rhizosphere PSM can use these carbon

substrates for their metabolic process, which are responsible for organic acid

production in the rhizosphere and/or protein excretion (Azcon and Barea 1996).

Second, the extensive mycorrhizal network formed around roots can efficiently take

up P released by PSM thus minimizing its re-fixation. Barea et al. (2002) reported

that the combined inoculation with PSB, mycorrhizal fungi, and Rhizobium
increased the P uptake by several legumes fertilized with rock phosphate. Mycor-

rhizal interaction with PSM has been found beneficial and has shown dramatic

improvement in plant P uptake in highly weathered soil in contrast to the results

obtained for less-weathered soils. Osorio (2011) in his experiments while using

PSM alone and in combination with mycorrhizal fungi in order to assess their

impact on growth of Leucaena leucocephala found that the overall growth of test

plant was highly dependent on the nature of P sorption capacity of soil. The sole

application of PSM significantly increased plant growth of Leucaena in low P

sorption soil, while in high P sorption soil mixture of PSM and AMF was signifi-

cantly greater than single application of PSM. This finding suggested that the

effectiveness of PSM in increasing plant P uptake and growth is controlled by the

P sorption capacity. In soils with low P sorption (P0.3 < 100) capacity, though PSM

inoculation alone can increase plant growth but in soils with medium and high P

sorption (100 < P0.2 < 500 < P0.2), PSM alone is less effective or even ineffec-

tive, their effectiveness depends on the presence of mycorrhizal association.

In other study, Osorio (2008) observed that PSM could desorb P from mineral

and soil samples, but this was controlled by the P desorption (higher P desorption at

low P0.2 value). For minerals, the magnitude on which P desorbed was in the order

montmorillonite > kaolinite > goethite > allophone (null description) and conse-

quently for soils the order was mollisol > oxisol > ultisol > andisol. The amount

of P desorbed by the PSM was higher when the minerals or soils had higher levels

of sorbed P; this is when saturation of sorption sites was higher.

In addition to the PGPR, PSB has been found to form symbiotic relationship with

AM fungi (Wang et al. 2011). For example, Toro et al. (2008) conducted an

experiment to test the efficacy of composite microbial inoculations such as a

wild-type (WT) R. meliloti strain, its genetically modified (GM) derivative, the

AM fungus G. mosseae (Nicol. and Gerd) Gerd and Trappe, and a PSB

Enterobacter sp. and rock phosphate (RP) on N and P acquisition by alfalfa plants.

Interestingly, all the microbial cultures were established well within root tissues

250 M.S. Khan et al.



and/or in the alfalfa rhizosphere and had no antagonistic effect towards each other.

Also, the population of PSB was stimulated following both AM colonization and

RP application and GM Rhizobium application. Subsequently, there was tremen-

dous improvement in N and P accumulation in alfalfa plants following composite

microbial inoculations. Even though the Enterobacter application had no noticeable
effect on N or P accumulation in soil treated with RP, it showed an obvious effect in

the non-RP-amended controls. In addition, 15N:14N ratio in plant shoots indicated

enhanced N2 fixation rates in Rhizobium-inoculated AM plants, compared to those

obtained by the same Rhizobium strain in non-mycorrhizal plants. Regardless of the

Rhizobium strain and of whether or not RP was added, AM-inoculated plants

showed a lower specific activity (32P:31P) than did their comparable non-mycorrhi-

zal controls suggesting that the plant was using otherwise unavailable P sources.

The P-solubilizing, AM-associated, microbiota could in fact release P ions, either

from the added RP or from the indigenous “less-available” P. Additionally, the

proportion of plant P derived either from the labeled soil P (labile P pool) or from

RP was similar for AM-inoculated and non-mycorrhizal controls (without

Enterobacter inoculation) for each Rhizobium strain, but the total P uptake, regard-

less of the P source, was far higher in AM plants which could probably be due to P

mobilization by AM fungi.

10.4.2 Inoculation Effects of Phosphate Solubilizers on Cereal
Crops

The use of PSB in agricultural practices dates back to 1950s when some Russian

and European scientists applied Megaterium viphosphateum, which later on was

identified as Bacillus megaterium var. phosphaticum. The preparation of this

bacterium was subsequently called as phosphobacterin (Cooper 1959; Menkina

1963), and when this was used, increased crop yields from 0 % to 70 % in Soviet

soils. However, similar experiments conducted in USA failed to produce any

significant effect (Smith et al. 1961). Despite conflicting reports on the performance

of PSB in variable agro-ecosystem against a multitude of crops (Yarzábal 2010),

they have since been applied and have shown promising results in some parts of the

world (Chesti and Ali 2007; Baig et al. 2011). For example, in a trial conducted

under both pot and field environments, the biomass and total P of winter wheat

(Triticum aestivum) were significantly increased following sole application of

Phosphobacterium strain 9320-SD. However, there was no significant difference

in height of the test plants (Chen et al. 2006). Similarly, PSB isolated from stressed

environment such as cold temperature region contained Serratia marcescens with
inherent PGP traits such as IAA, HCN, and siderophore production profoundly

enhanced the plant biomass and nutrient uptake of wheat seedlings when grown in

cold environment (Selvakumar et al. 2008). In a follow-up study, wheat plants

inoculated with ACC deaminase-secreting PSB, P. fluorescens and P. fluorescens
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biotype F, had higher growth, yield, and nutrient use efficiency, when grown in soil

treated simultaneously with varying levels of three major nutrients like N, P, and K

(at 0 %, 25 %, 50 %, 75 %, and 100 % of recommended doses). However, the

overall growth of inoculated wheat plants decreased both under pot and field trials

with increasing concentration of synthetic fertilizers.

Hence, in most of the cases, significant negative linear correlations were

recorded between percentage increases in growth and yield parameters of even

inoculated wheat plants. The decline in growth and yield of bacterized wheat plants

when grown with increasing chemical fertilizers, however, raised certain questions.

For example, do the rates of fertilizers greater than recommended ones have any

direct impact on composition and functional activities of bacteria or excessive rates

have any inhibitory effect on plants metabolism? In this context, it is speculated that

low fertilizer application causes reduction in the ACC deaminase activity of PS

strains and thereby leads to reduction in the synthesis of stress (nutrient)-induced

inhibitory levels of ethylene in the roots through ACC hydrolysis into NH3 and

α-ketobutyrate. Based on this finding, the study suggested that Pseudomonads
could be used in combination with appropriate doses of fertilizers for better plant

growth and savings of fertilizers (Shaharoona et al. 2008) as also observed by

Kumar et al. (2009) and Maheshwari et al. (2011). Such increase in cereal produc-

tion following PSB such as P. fluorescens 153, P. fluorescens 169, P. putida 4, and
P. putida 108 application has been attributed to both PSA of PSB and their ability to

synthesize growth-promoting substances (such as ACC deaminase and IAA-like

products) in natural soil ecosystem (Zabihi et al. 2011). Interestingly, P. putida
108 among the bacterial cultures displayed enhanced P uptake (96 % and 80 %) and

grain yield (58 % and 37 %) in wheat under greenhouse and field conditions,

respectively. Even though this finding suggested that Pseudomonas sp. could

serve as an alternative to expensive P application in wheat production system, the

better results can be achieved when a compatible bioinoculant is added as mixture

with 50 % (25 kg/ha P2O5) P fertilization. In a recent follow-up study, Abbasi et al.

(2011) isolated eight PGPR strains and assessed their morphological and cultural

characteristics, PSA and their ability to secrete IAA. Invariably all strains produced

IAA (ranging from 5.5 to 31.0 mg/ml) while only four of them showed

P-solubilizing traits. Subsequently, strains WPR-32, WPR-42, and WPR-51

grouped under PGPR category were used both as single and coculture along with

two levels (50 and 100 kg N/ha) of N to evaluate their effect against wheat under

greenhouse conditions. As expected, application of PGPR resulted in significant

increase in plant height (25 %), shoot fresh weight (45 %), and shoot dry weight

(86 %), while it was 27 %, 102 %, and 76 % increase in root length, root fresh and

dry weight, respectively, over uninoculated plants. In addition, the number of tillers

per plant, 1,000-grain weight, and grain yield were enhanced by 23 %, 48 %, and

59 %, respectively, over control. The nutrient (N and P) uptake by plant organs like

shoot was increased threefolds, while K uptake was increased by 58 % following

PGPR application.

However, the growth, yields, and nutrient uptake were increased even further

when bacterial cultures were used together with varying levels of N. Apart from the
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direct effect of PGPR on wheat plants, the concentration of NO�3, N, and available

P in soil also increased with PGPR application. Moreover, of the varying

treatments, mixed bacterial cultures showed better efficiency than the individual

ones suggesting that there is no reason to doubt why application of PGPR with N

fertilizer cannot increase N contents and N uptake by plants. Also, application of

PGPR even with low fertilizer rates could be a more viable option for achieving

optimum benefits while reducing the dependence on chemical inputs (Kumar et al.

2009). An interactive and positive effect of PSB, N2 fixer, and AM fungi on plant

vigor, nutrient uptake, and yield in wheat plants was observed following composite

application of Pseudomonas striata + Azotobacter chroococcum + Glomus
fasciculatum. The available P contents in soil enhanced significantly due to triple

inoculation of A. chroococcum, P. striata, and G. fasciculatum. The residual N

content of soil, however, did not change appreciably even among the treatments.

The density of A. chroococcum, PSB, percentage root infection, and spore density

of the AM fungus in inoculated treatments increased at 80 days of wheat growth

(Zaidi and Khan 2005).

Inoculation of Burkholderia vietnamiensis to rice (Oryza sativa) cultivars in two
pot and four field trials at different locations of Vietnam showed an enhancement of

33 %, 57 %, 30 %, and 13 % in shoot weight, root weight, leaf area, and number of

tillers/hill, respectively, compared to non-inoculated plants. In other study, strain

of Rhodobacter capsulatus significantly increased the plant dry weight, number of

productive tillers, grain and straw yields of rice var. Giza 176, grown in pot treated

with different levels of N fertilizer compared to non-inoculated plants (Elbadry

et al. 1999). The results of this study concluded that N fertilizer could be saved up to

50 % while applying bacterial fertilizers. Similarly, an increase of 41 %, 12 %,

11.2–20 %, and 18.7 % in root weight, straw yield, grain yield, and total biomass,

respectively, due to PGPR inoculation over non-inoculated rice is reported

(Sherchand 2000; Mehnaz et al. 1998). The liquid culture (for pot experiments) or

carrier-based preparation (for field trials) of three bacterial species, such as Bacillus
megaterium, B. subtilis, and Pseudomonas corrugata, isolated from temperate

locations in the Indian Himalayan region and exhibiting phosphate-solubilizing

activity (PSA) in the order P. corrugata > B. megaterium > B. subtilis, when tested
caused a dramatic increase in overall performance of rice. While comparing the effect

of three cultures, B. subtilis had the most promising effect and increased the grain

yield by 1.7- and 1.6-fold in pot and field trials, respectively (Trivedi et al. 2007).

Similar variable effects of PSB on other cereals used either alone or in combi-

nation with other chemical fertilizers have been reported (Panhwar et al. 2011;

Yazdani et al. 2011). For example, like wheat and cereals, there has also been a

substantial increase in the biomass of maize (Zea mays) plants inoculated with

S. marcescens (EB 67) and Pseudomonas sp. (CDB 35) (Hameeda et al. 2008). In

this experiment, strain EB 67 enhanced the dry matter accumulation by 99 % while

it was 94 % by strain CDB 35. Grain yield of inoculated maize increased by 85 %

and 64 %, following EB 67 and CDB 35 application, respectively. When applied as

mixture with arbuscular mycorrhizal (AM) fungi Glomus intraradices, the PSB
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Pseudomonas fluorescens (Pf) had a positive impact on plant growth, nutrient

uptake, grain yield, and yield components in maize plants. Composite inoculation

of the two cultures significantly increased grain yield, yield components, harvest

index, grain N and P, soil available P, and root colonization percentage under water

stress conditions. However, some of the assayed characteristics under well-watered

conditions were nonsignificantly higher in chemical fertilizer treatment compared

to those observed for dual inoculation treatments. However, the effect of sole

application of P. fluorescens (Pf) was poor relative to the composite application

of AM fungus with PSB or single application of AM fungi. The measured

parameters of inoculated plants were in general higher than un-inoculated plants

under water deficit stress conditions. In addition, the characteristics determined for

coinoculated plants grown under severe water-stressed conditions were signifi-

cantly lower than coinoculated plants grown under well-watered and moderate-

stressed conditions. This finding suggested that PSB can interact positively with

other organism like AM fungi as observed in this study and can be used to facilitate

plant growth and P uptake by maize plants, leading to plant tolerance improving

under water deficit stress conditions (Ehteshami et al. 2007). In a recent study,

Rajapaksha et al. (2011) conducted experiments under both pot and field environ-

ment to assess the substitutability of triple superphosphate (TSP) by a P fertilizer

mixture (PFM) involving TSP, RP, and PSB inoculants for wetland rice. For these

studies, six single and two dual inoculants were formulated with Enterobacter
gergoviae and five Bacillus species. In pot trials, the mixture of E. gergoviae and

B. mycoides and the sole application of B. subtilis enhanced yields by 32 % and

25 %, respectively, relative to single application of TSP. The results observed in pot

trials were validated under field environment where dual culture of E. gergoviae
with B. subtilis and E. gergoviae with B. pumilus augmented grain yield by

22–27 % compared to TSP application alone (574 gm�2). Overall, it was suggested

that about 50 % of TSP could be saved when RP is applied with E. gergoviae,
B. pumilus, and B. subtilis, as seed inoculant for raising the productivity of rice both
under pot and field conditions.

10.5 Conclusion and Future Prospects

Considering the documented data and literature presented in this chapter, it seems

feasible that the soil nutrient pool especially P using renewable resources like

microbes can be increased by (1) careful management of existing microbial

populations to optimize their competence to solubilize/mobilize P and (2) applying

microbial inoculants especially designed/developed to provide P to plants. Despite

repeated claims of making P available to plants or enhancing soil P by PSB, limited

success in terms of their wide and regular application in agronomic practices has,

however, been achieved so far. The reason for this low popularity of microphos

could be both unawareness about the performance of PSB among practitioners or

their varying activity under natural but fluctuating environments. Therefore, to
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make PSM more attractive and cost-effective measures for increasing crop produc-

tivity in different agro-ecological regions, we need to have a detailed and meaning-

ful understanding of microbial interactions occurring in soil environment.

Moreover, how soil and farm management practices influence the processes

mediated by PSM needs to be elucidated. In this context, molecular tools and

metagenomic approaches have provided some insight to uncover the structure and

functions of PSM. Genetic manipulation of some PSB and plants for important

features such as P mobilization or growth promotion besides generating specific

mutants with traits such as organic anion release in Pseudomonas spp. could play

pivotal roles in deciphering mechanistic basis and evaluating their contribution to

increased P availability in soil. Even some success has been achieved here and there

by using molecular tools; there is greater need to develop area-specific microphos

which may be suitable for application in any specific region. If developed with

suitable multiple traits, such microphos can be applied back into the same environ-

ment from where they originated. This approach is, therefore, likely to reduce the

impact of fluctuating environment on the performance of PSM when used for

raising the production of different crops grown in many variable regions across

the world.
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Yarzábal LA (2010) Agricultural development in tropical acidic soils: potential and limits of

phosphate-solubilizing bacteria. Soil Biol Agric Trop 21:209–233

Yazdani M, Bagheri H, Ghanbari-Malidarreh A (2011) Investigation on the effect of biofertilizers,

phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria

(PGPR) on improvement of quality and quantity in corn (Zea mays L.). Adv Environ Biol

5:2182–2185

Yi Y, Huang W, Ge Y (2008) Exo-polysaccharide: a novel important factor in the microbial

dissolution of tricalcium phosphate. World J Microbiol Biotechnol 24:1059–1065

Yu X, Liu X, Hui TZ, Liu GH, Mao C (2011) Isolation and characterization of phosphate-

solubilizing bacteria from walnut and their effect on growth and phosphorus mobilization.

Biol Fertil Soils 47:437–446

262 M.S. Khan et al.



Zabihi HR, Savaghebi GR, Khavazi K, Ganjali A, Miransari M (2011) Pseudomonas bacteria and

phosphorous fertilization, affecting wheat (Triticum aestivum L.) yield and P uptake under

greenhouse and field conditions. Acta Physiol Plant 33:145–152

Zaidi A (1999) Synergistic interactions of nitrogen fixing microorganisms with phosphate

mobilizing microorganisms. Ph.D. Thesis, Aligarh Muslim University, Aligarh

Zaidi A, Khan MS (2005) Interactive effect of rhizotrophic microorganisms on growth, yield, and

nutrient uptake of wheat. J Plant Nutr 28:2079–2092

Zaidi A, Khan MS (2006) Co-inoculation effects of phosphate solubilizing microorganisms and

Glomus fasciculatum on green gram-Bradyrhizobium symbiosis. Turk J Agric 30:223–230

Zaidi A, Khan MS, Amil M (2003) Interactive effect of rhizotrophic microorganisms on yield

and nutrient uptake of chickpea (Cicer arietinum L.). Eur J Agron 19:15–21

Zaidi A, Khan MS, Aamil M (2004) Bioassociative effect of rhizospheric microorganisms on

growth, yield, and nutrient uptake of green gram. J Plant Nutr 27:599–610

Zaidi A, Khan MS, Ahemad M, Oves M (2009a) Plant growth promotion by phosphate

solubilizing bacteria. Acta Microbiol Immunol Hung 56:263–284

Zaidi A, Khan MS, Oves M, Ahemad M (2009b) Strategies for development of microphos and

mechanisms of phosphate-solubilization. In: Khan MS, Zaidi A (eds) Phosphate solubilizing

microbes for crop improvement. Nova Science, New York

Zaidi A, Ahemad M, Oves M, Ahmad E, Khan MS (2010) Role of phosphate-solubilizing bacteria

in legume improvement. In: Khan MS, Zaidi A, Musarrat J (eds) Microbes for legume

improvement. Springer, Wien, pp 273–292

Zhu F, Qu L, Hong X, Sun X (2011) Isolation and characterization of a phosphate-solubilizing

halophilic bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the coast of yellow sea

of China. Evid Based Complement Alternat Med. doi:10.1155/2011/615032

10 Functional Aspect of Phosphate-Solubilizing Bacteria: Importance in Crop. . . 263

http://dx.doi.org/10.1155/2011/615032


Chapter 11

The Role of Siderophores in Plant

Growth-Promoting Bacteria

Ana Fernández Scavino and Raúl O. Pedraza

11.1 Introduction

Iron is the fourth most abundant element in the earth’s crust, and living organisms

require iron for growth. Although abundant in the environment, iron is not readily

available. Under aerobic conditions, free ferrous iron, Fe(II), is oxidized to ferric

iron, Fe(III), forming oxy-hydroxide polymers, which are not very easily soluble

(Neilands 1995).

Iron is physiologically indispensable since a great number of proteins require

iron for their activities, particularly the enzymes involved in redox reactions.

Organisms have developed different mechanisms to scavenge iron from the abun-

dant but biologically unusable sources in the environment. Examples of them are

(1) reduction of extremely insoluble forms of ferric ion to soluble forms of ferrous

ion that can be used easily, (2) use of iron present in hemoglobin by the destruction

of erythrocytes and hydrolysis of hemoglobin, (3) direct use of the iron stored in

ferritin (complexes that store iron in a form that is soluble, bioavailable, and

nontoxic), and (4) enzymatic degradation of compounds that bind ironlike transfer-

rin (Vasil and Ochsner 1999). But among the various mechanisms employed, the

production of iron-binding compounds called siderophores is the best studied.

The term siderophore stands for “iron carriers” or “iron bearers” in Greek. They

are water-soluble, low-molecular-weight, organic ligands with high affinity and

specific for iron binding (Kraemer 2004). This constitutes a high-affinity system for

the uptake of iron from the external medium, present in many microorganisms. This
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system has three components: a siderophore that acts as a high-affinity ferric-ion-

specific ligand that is usually released to the extracellular environment by microbes,

a membrane receptor for iron-bound siderophore (ferri-siderophore) complex that

transports the chelated iron across the microbial membrane, and an enzymatic

system that is present within the cell that can release ferric ion bound to the

siderophore. The siderophores form soluble complexes with ferric ion which, in

natural environments, is extracted from insoluble iron hydroxides, protein-bound

iron from cellular detritus, or from other iron chelates.

This system of high-affinity acquisition and receptor-dependent transport of

ferric ion is associated with growth or germination factors and with virulence

factors (Crichton and Charloteaux-Wauters 1987). Due to which the siderophores

production is a common trait of invasive pathogenic microorganisms, synthetic

analogs of bacterial siderophores attract increasing interest as potential drugs for

the treatment of infections (Bergeron et al. 1999).

Recently, siderophores production proved in different plant growth-promoting

bacteria (PGPB) as an important attribute in the plant growth and phytosanitary

protection (Compant et al. 2005, Maheshwari 2011). Considering the important role

that siderophores production can play in agronomic ecosystems, the iron content as

a limiting nutrient for living organisms, the bacterial siderophores production

particularly in PGPB, and the biotechnological applications of siderophores in

agriculture are presented in this chapter.

11.2 Iron as a Limited Nutrient

Iron is an essential trace nutrient for most known organisms. The abundance of iron

in soils is 1–6 % by weight, and its solubility is dependent on pH. In most

environments iron deficiency is not caused by low total iron concentrations but

by low iron bioavailability (Kraemer 2004). In aerobic environment iron is found as

Fe(III), which is insoluble under physiological conditions (Powell et al. 1980;

Matzanke et al. 1989).

More than 100 enzymes involved in primary and secondary metabolism possess

iron-containing cofactors such as iron–sulfur cluster or heme groups. The reversible

Fe(II)/Fe(III) redox pair is best suited to catalyze a broad spectrum of redox

reactions and to mediate electron chain transfer (Miethke and Marahiel 2007).

These enzymes and cofactors participate in various processes such as respiration,

activation of oxygen, degradation of hydrogen peroxide and hydroxyl radicals,

amino acid and pyrimidine biosynthesis, the citric acid cycle, DNA synthesis,

nitrogen fixation, carbon fixation metabolism, photosynthesis, and oxygen binding

(Andrews 1998). In addition, several transcriptional and posttranscriptional

regulators interact with iron to sense its intracellular level or the current status of

oxidative stress in order to efficiently control the expression of a broad array of

genes involved mainly in iron acquisition or in the reactive oxygen species protec-

tion (Hantke 2001).
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The cellular uptake of iron is restricted to its physiologically most relevant

species, ferrous, i.e., Fe(II), and ferric, i.e., Fe(III). Ferrous form is more soluble

in aqueous solutions at neutral pH and then sufficiently available for living cells if

remains in the reductive status. Generally, Fe(II) form can be taken up by ubiqui-

tous divalent metal transporters, although specific ferrous uptake systems are

known in bacteria and yeasts (Miethke and Marahiel 2007).

Though iron is required by a majority of microorganisms, there are some

exceptions like the lactic acid bacteria, as they do not contain heme enzymes and

the iron-containing ribonucleotide reductase (Neilands 1995). On the other hand,

iron can be toxic for certain organisms. High intracellular concentration of ferrous

ion may produce hydroxyl radicals (Crichton and Charloteaux-Wauters 1987). This

problem is alleviated with enzymes such as superoxide dismutase, catalase, and

peroxidase that can degrade reactive oxygen species. Iron toxicity is also alleviated

by the presence of antioxidants such as glutathione and endonucleases that repair

damages caused to DNA during redox stress (Andrews 1998). It is also well known

that the iron imports toxicity towards rice plants in lowland environments. After

inundation, reduction of iron oxides and hydroxides results in the accumulation of

large amounts of ferrous ion that disrupt or overexpress metabolic processes that

result in damage of the rice plant (Becker and Asch 2005).

11.2.1 Iron Bioavailability

The iron pools in soils and aquatic environments contain iron complexes (ferric

complexes with other ligands different from siderophores), iron-bound enzymes

from detritus plant and microbial cells, iron bound to humic and fulvic substances,

and iron-bearing minerals. A major iron pool in terrestrial and aquatic systems is

constituted by iron oxides (Kraemer 2004). Some pathogens can mobilize ferric

iron directly from iron-containing eukaryotic host proteins, like transferrin,

lactoferrin, and ferritin, or from heme using a heme oxygenase (Winkelmann

2007). The siderophores production is a particularly efficient and specialized

iron-acquisition system that confers competitive advantage to many organisms in

biotic and abiotic ecosystems. Most of the information in biological iron acquisition

is focused on aerobic systems since reducing conditions lead to a strong increase of

iron solubility and is unlikely to encounter iron-limiting conditions in reduced

systems (Kraemer 2004). The iron availability is limited by the solubility, and the

slow dissolution kinetics of iron-bearing mineral phases particularly occurs in

neutral or alkaline environments. The solubility of iron oxides in aerobic systems

depends on the properties of the solids, on the particle size, and on the pH, ionic

strength, and concentration of organic ligands in solution (Kraemer 2004). At

neutral pH and oxic conditions, Fe(II) quickly oxidizes to Fe(III) (Stumm and

Morgan 1995). In the absence of a strong organic ligand, Fe(III) precipitates rapidly

as a hydrous ferric oxide, and citrate is too weak to bind iron and prevent Fe(III)

precipitation in the culture medium (Konigsberger et al. 2000).
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In the soil environment, at around neutral pH, the free Fe(III) concentration in

equilibrium with ferric oxide hydrates is around 10�17 M (Budzikiewicz 2010). But

living microorganisms require higher concentrations (10�6 M), and when cells

detect concentrations below this threshold, the siderophores production begins

(Miethke and Marahiel 2007). Siderophores have a pronounced effect on the

solubility of iron oxides over a wide range of pH due to the extraordinary

thermodynamic stability of soluble siderophore–iron complexes. Very small

concentrations of free siderophores in solution have a large effect on the saturation

state of iron oxides. This siderophore-induced disequilibrium can drive dissolution

mechanism such as proton-promoted or ligand-promoted iron oxide dissolution.

The adsorption of siderophores to oxide surfaces also induces a direct siderophore-

promoted surface-controlled dissolution mechanism (Kraemer 2004). In addition,

iron can also be mobilized by exudation of non-siderophore ligands that are

ubiquitous in soil. Organic acids such as lactate, succinate, fumarate, malate,

acetate, and amino acids exuded by roots of iron-stressed plants can also contribute

to the Fe(III) solubilization and influence microbial iron acquisition (Fan et al.

1997).

11.2.2 Siderophores from Different Organisms

Various plants belong to family Poaceae (graminaceous grasses); fungi and several

bacterial genera are known to sequester iron using siderophores (Neilands 1957;

Takagi 1976; Winkelmann 1992).

A specialized mechanism for iron uptake is observed in Poaceae plants

which, via roots, release iron-chelating nonproteinogenic amino acids called

phytosiderophores. According to Römheld and Marschner (1986), there are two

strategies for the acquisition of iron by plants under iron deficiency. Strategy I (in

most non-Poaceae species) is characterized by an inducible plasma membrane-

bound reductase and an enhancement of H+ release. Strategy II (in grasses) is

characterized by an enhanced release of phytosiderophores and by a highly specific

uptake system for Fe(III) phytosiderophores. This strategy seems to have several

ecological advantages over strategy I such as solubilization of sparingly soluble

inorganic Fe(III) compounds in the rhizosphere and less inhibition by high

pH. Thus, mugineic acid is produced by barley, distichonic acid by barley, avenic

acid A by oats, deoxymugineic acid by wheat, hydroxymugineic acid by rye, and

nicotinamide by tobacco. Some plant like barley is able to take up ferriphytosi-

derophores 100–1,000 times faster than other ferri-chelators (Castignetti and

Smarrelli 1986). It has been observed that the lower affinities of phytosiderophores

by iron, compared to microbial siderophores, are partly compensated by high

exudation rates by Poaceae plant roots resulting in local ligand concentrations in

the millimolar range in the rhizosphere, whereas the bacterial hydroxamate

siderophore concentration is four orders lower (Römheld 1991).

268 A. Fernández Scavino and R.O. Pedraza



Most fungi produce a variety of different types of siderophores, and individual

organism may produce a set of siderophores covering a wide range of physico-

chemical properties. This diversity allows fungi to overcome the adverse local

conditions of iron solubility and the outcompetition by motile bacteria that can

migrate towards increasing nutrient concentrations (Winkelmann 2007). More than

100 structurally different fungal siderophores are known, though all of them have a

peptidic ring in common. One of the four major classes, the ferrichromes,

comprises diverse structures that are recognized by their resistance to degradation

in the environment, particularly when they are complexed with iron (Winkelmann

2007). Virtually all aerobic bacteria and fungi produce siderophores (Neilands and

Leong 1986). Though, this property is a clear advantage for microorganisms

inhabiting aerobic environments. Most of the facultative bacteria isolated of rice

paddy soils reported as siderophore producers (Loaces et al. 2011). It remains to be

elucidated if these bacteria are effectively producing siderophores in such anoxic

soils where iron probably is present as Fe(II).

There are microorganisms which are unable to produce siderophores. Saccharo-
myces cerevisiae lacks the ability to synthesize siderophores, although it can utilize
siderophores produced by other species via reductive and nonreductive iron assimi-

lation (Eissendle et al. 2003). In addition, Pandey et al. (1994) studied 23 strains of

lactic acid bacteria for their ability to produce siderophores. The growth of several

strains tested was unaffected by an iron deficiency, and no direct effect due to iron

chelation by a synthetic iron chelator was observed. Hence, the authors confirmed

that these strains of lactic acid bacteria do not require iron.

11.2.3 Siderophores in Soil

In most environmental systems, siderophores mainly exist in complexed form

(Kraemer 2004). Their concentrations in soil depend on the soil horizons, but the

rhizosphere shows higher concentrations than bulk soil (Bossier et al. 1988). Powell

et al. (1980) have estimated hydroxamate siderophore concentrations in soil

solutions between 10�7 and 10�8 M. Römheld (1991) has estimated that

phytosiderophore concentrations can reach local concentrations of up to 10�3 M

since plants are able to exude phytosiderophore at high rates into the rhizosphere.

The concentration of microbial siderophores depends on the environmental

conditions. Ferrioxamine B-type siderophores, produced by most actinomycetes

(Neilands and Leong 1986), were the most abundant siderophore producer in a

tiller-amended soil system, whereas the ferrichrome type produced in smaller

quantities by several fungi (Crowley et al. 1987). On the other hand, Holmström

et al. (2004) identified the main siderophores in coniferous forest soils intensively

colonized by ectomycorrhizal hyphae as ferrichrome and ferricrocin, with the

former detected in nanomolar concentrations in humic layers overlying granitic

rock and soils (Holmström et al. 2004). Ferricrocin is a widespread siderophore

in forest soils that seems to be resistant to the proteases excreted by plants and
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Gram-positive bacteria (Winkelmann 2007). It is now considered that organic non-

siderophore ligands, as several amino acids and organic acids like citrate, can be

exudated by plants and influence the iron availability. These ligands are ubiquitous

in soil and might have a synergistic or inhibitory effect on the siderophores

dissolution rates (Kraemer 2004).

Furthermore, Kraemer (2004) proposed that the compressive understanding of

the role of siderophores in increasing iron oxide solubility and promoting dissolu-

tion in soils requires the consideration of the rates of various processes that

occurred simultaneously. Thus, the siderophore exudation rates, the uptake, and

the degradation rates, as well as the loss of siderophores by adsorption on other

mineral surfaces, the partitioning of iron into humic substances, and the complexa-

tion of metal other than iron (which stability may be significant, specially for

similar ions as Al(III) or for Ca(II) that is often present in much higher

concentrations), should be considered. In addition, iron oxides in natural terrestrial

environments are often coated with humic and fulvic acids, exo-polysaccharides, or

biogenic low-molecular-weight organic acids, and the inhibitory, competitive, or

synergistic effects of such substances on siderophore-controlled iron acquisition

need to be investigated.

11.3 Microbial Siderophores

Microbial siderophores show great variability in their chemical structures. This

may be due to genetic factor or biochemical

11.3.1 Chemical Structures

Siderophores are iron-chelating secondary metabolites with masses below 2,000 Da

(Budzikiewicz 2010). Almost 500 siderophores with known structure have been

reported (Boukhalfa and Crumbliss 2002), and several hundred active iron-chelator

compounds have been characterized and purified (Hider and Kong 2010). Most, but

not all, of siderophores are hexadentate ligands forming 1:1 complexes with Fe(III)

(Kraemer 2004), and their capability to form stable complexes with Fe(II) is rather

low (Miethke and Marahiel 2007).

The major Fe(III) ligand types are catecholates, hydroxamates, and alpha-

hydroxycarboxylates and often are combined in the same molecule of siderophore

(Budzikiewicz 2010). Carboxylate siderophores are produced by microorganisms

that live in acidic environments, e.g., fungi, but these could not compete with

stronger siderophores such as catecholates at physiological pH (Dertz and

Raymond 2003), since catecholates have higher affinity for Fe(III). These ligands

are supported in different chemical structures such as peptides, di- and tri-

aminoalkanes, and siderophores based on citric acid along with miscellaneous
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siderophores. The peptide chain carrying the ligand sites usually contains cyclic

structures at the extremes that prevent their degradation by proteolytic enzymes.

The peptidic siderophores are produced by fluorescent Pseudomonas
(pyoverdines), as well as by species of the genera Azotobacter, Mycobacterium,
Rhodococcus, and by many enterobacteria and by most of fungi. This also includes

lipopeptide siderophores produced by species of the genera Burkholderia,
Nocardia, and Mycobacterium. The siderophores based on di- and tri-aminoalkane

skeletons are produced by few rhizobia, Paracoccus, Burkholderia,
Agrobacterium, and several Actinomycetes. Siderophores based on citric acid are

produced by bacteria from the genera Bacillus, Acinetobacter, Arthrobacter,
Ochrobactrum, Rhizobium, Synechococcus, Vibrio, Ralstonia, Staphylococcus,
and Marinobacter (Budzikiewicz 2010). Thus, the stability of Fe(III) siderophore

complexes varies in a range about 30 orders of magnitude depending on the

siderophore structure and on the ligand type. Also, the pH of the environment

strongly influences the chelation efficiency (Miethke and Marahiel 2007). Although

Gram-negative and Gram-positive bacteria have differences in their cell structure,

they share some genes in common for both specific siderophores transport and iron-

binding proteins (Clarke et al. 2000).

Many bacteria produce more than one type of siderophore or have more than one

iron uptake system to take up multiple siderophores (Neilands 1981). Recently,

other compounds able to bind iron with comparable affinity to the known bacterial

siderophores have been reported. The degradation product of an acylhomoserine

lactone (signal molecule in the Quorum Sensing system) produced by Pseudomonas
aeruginosa possibly is an unrecognized mechanism for iron solubilization

(Kaufmann et al. 2005). Recently detail description on types and chemistry of

siderophores is reviewed by Desai and Archana (2011).

11.3.2 Biochemical and Genetic Determinants Involved
in Bacterial Siderophores Production

Siderophores production as a response to iron limitation is widespread among

aerobic microorganisms (Neilands et al. 1987). It has been reported that among

302 different fluorescent Pseudomonas strains isolated from soils, 297 produced

detectable siderophores under iron deficiency (Cocozza and Ercolani 1997).

Although this iron-acquisition system is induced under iron-limiting conditions,

other environmental factors such as pH, the presence of other trace elements, and

the availability of carbon, nitrogen, and phosphorous sources also influence the

siderophores production (Duffy and Defago 1999). This system involves several

steps: intracellular biosynthesis of siderophores, exudation of siderophores in the

extracellular space, iron mobilization by competitive complexation or dissolution

of iron-bearing minerals, and recognition and uptake of ferric siderophore
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complexes by highly efficient transport systems or liberation of iron from the

siderophore complex and uptake of iron (Boukhalfa and Crumbliss 2002).

The system requires tightly regulated enzymes and transport systems that allow

concerted siderophore biosynthesis, secretion, siderophore-delivered iron uptake,

and iron release. In bacteria, gene regulation of siderophore utilization and iron

homeostasis is mediated mainly at the transcriptional level by the ferric uptake

repressor Fur (in Gram-negative and low mol % GC Gram-positive bacteria) or by

the diphtheria toxin regulator DtxR (in Gram-positive high GC contents as

streptomycetes and corynebacteria) (Hantke 2001). The synthesis of catecholates

mostly depends on the nonribosomal peptide synthetases, whereas hydroxamate

and carboxylate siderophores are assembled by diverse enzymes such as

monooxygenases, decarboxylases, and aminotransferases (Miethke and Marahiel

2007).

In bacteria, the main route for the uptake of Fe complexed in siderophores is the

import of the complex into the cytosol through specific transporters. Moreover, the

organisms that can use exogenous siderophores (synthesized by other organisms)

showed frequently a greater battery of Fe-siderophore importers than siderophore

exporters (Miethke and Marahiel 2007). The iron release from the Fe(III)

siderophore complex into the cytosol comprises either the reduction to Fe(II) by

relatively unspecific ferric siderophore reductases or the hydrolysis of the complex

by specific enzymes that liberate Fe(III) which is further reduced or complexed by

other cellular iron components (Miethke and Marahiel 2007).

Moreover, the role of siderophores might not be limited to the iron chelation.

The nitrogen-fixing bacterium Azotobacter vinelandii produces at least five differ-
ent siderophores, where concentration increases sharply at low iron concentration in

diazotrophic cultures although their production is not suppressed at high iron

concentration (Bellenger et al. 2008). Kraepiel et al. (2009) suggested that

A. vinelandii may produce siderophores to acquire molybdenum (Mo) and vanadium

(V), two important metals required for nitrogen fixation, when these metals are

limiting in diazotrophic cultures.

11.3.3 Siderophores Influence the Interaction Among
Organisms

Siderophores production can modify the interaction among organisms in the envi-

ronment leading to mechanisms of cooperation or competence.

The capability of sensing iron in the environment is an advantage by the

siderophore-producing organism and may help other microorganisms that do not

have this capability or that are not so competitive. Many microorganisms are able to

utilize the Fe(III) complexes of siderophores which they have not synthesized. The

persistence in soils of ferrichromes, the most common fungal siderophores, benefits

other microorganisms that have the receptors for the uptake of these siderophores as
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in case of several enterobacteria like Pantoea, Enterobacter, Erwinia, and Yersinia
(Winkelmann 2007). Also, the uptake of bacterial siderophores by fungi, like

Saccharomyces and Aspergillus, has been observed (Haas 2003¸ Heymann et al.

2000; Lesuisse et al. 1998), and the enterobactin, the predominant siderophore

produced by enterobacteria, can also be utilized by Saccharomyces, a non-

siderophore-producing microorganism (Winkelmann 2007).

In addition, it has been proposed that partial degradation of fungi siderophores or

iron exchange between bacterial siderophores and phytosiderophores is involved in

the iron nutrition of Poaceae plants (Yehuda et al. 1996; Winkelmann 2007). An

indirect effect of cooperation has been postulated by Kraepiel et al. (2009) between

non-nodulating plants and free-living diazotrophs inhabiting their rhizosphere.

Besides iron, several metals are complexed and accumulated in plant leaves that

when decomposed in topsoil constitute a source of essential minerals for the

nitrogen fixation, from which the plants benefit. The diazotrophic bacteria extract

these essential minerals through the excreted siderophores.

Competence among microorganisms is well illustrated by several examples and

can benefit or be negative for the siderophore-producing microorganism. In general

bacterial siderophores, though differing in their abilities to sequester iron, deprive

pathogenic fungi of this essential element since the fungal siderophores have lower

affinity for Fe(III). This constitutes one of the main mechanisms of biocontrol of

plant pathogenic fungi (Loper and Henkels 1999). Their ability to use a large

number of heterologous siderophores has been confirmed by the presence of

many homologues of iron-siderophore receptor genes in their genomes (Cornelis

and Matthijs 2002; Kaufmann et al. 2005). Conversely, siderophore producers can

be invaded by nonproducing cheats from the same or different species that have the

siderophore receptors. Siderophores production is metabolically expensive to indi-

vidual producers but benefits all cells in the vicinity able to capture iron-

siderophore complexes produced by other cells of the same species (Harrison

et al. 2008). On the other hand, certain microorganisms synthesize structurally

distinct siderophores apparently as a strategy to overcome the competition of

cheaters. Streptomyces species produce two different siderophores with two inde-

pendent uptake systems; whereas ferrioxamines can be taken by several organisms,

the ferric coelichelin complex can be selectively absorbed into Streptomyces
coelicolor cells through an independent uptake system (Challis and Hopwood

2003). Additionally, the capability of microorganisms to degrade siderophores in

soil can modify the interaction established through siderophores production. It has

been reported that bacteria of the genus Azospirillum in pure cultures are able to

degrade ferrioxamines when present as iron-free compounds (Winkelmann et al.

1999).

A singular case may be the endophytic bacteria that colonize internal tissues of

the plants and their relationship with the siderophores production. In Uruguay it has

been shown that at the end of the cropping cycle, the leaves of three different rice

varieties were colonized by high amounts of siderophore-producing bacteria

(Fig. 11.1), with Pantoea and Pseudomonas as the predominant genera. Further-

more, the proportion of siderophore-producing bacteria to heterotrophic bacteria
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augmented in leaves when the plant grew, and they increased in roots compared to

rhizospheric soil after the flooding, when the environment becomes anoxic (Loaces

et al. 2011). They remained strongly associated to the plant tissues although in vitro

inhibition towards pathogenic fungi or PGPB was not observed. Apparently,

siderophore-producing bacteria were selected into the plant tissues, though the

benefit for the plant results is still unclear. Their role capturing Fe(III) generated

by the oxidation of Fe(II) in oxic micro-niches into the plant or in the rhizosphere,

increasing the iron availability locally, or reducing the Fe(II) toxicity towards the

plant by accumulation of the sequestered metal into the bacterial cells should not be

dismissed (Loaces et al. 2011).

Finally, the role of siderophore-producing bacteria as bacterial growth promoters

should be also considered. The (until now) uncultured bacteria may be stimulated

and become culturable in the presence of siderophore-producing bacteria. Recently

D’Onofrio et al. (2010) have shown that previously uncultured isolates from marine

sediment biofilm, grow on a Petri dish in the presence of cultured organisms from

the same environment. This helper strain produces a grow factor identified as new

acyl-desferrioxamine siderophore.

11.4 Siderophores Production in Plant Growth-Promoting

Bacteria

Siderophores have been implicated for both direct and indirect enhancement of

plant growth by rhizospheric microorganisms. The ecological significance

of microbial siderophores in soil and plant surfaces has attracted the attention of

workers.

Fig. 11.1 Enumeration

endophytic heterotrophic

bacteria (HB) and endophytic

heterotrophic siderophore-

producing bacteria (HSPB) in

leaves of three rice varieties

cultivated in Uruguay at the

end of the crop season. EP, El

Paso 144; IT, INIA Tacuarı́;

IO, INIA Olimar. The values

represent the mean of

triplicate plots in a field

experiment
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11.4.1 Plant Growth-Promoting Bacteria: Mechanisms
of Action

PGPB are a heterogeneous group of bacteria, such as the genera Azotobacter,
Azospirillum, Azoarcus, Herbaspirillum, Pseudomonas, and Rhizobium, among

others, that can be found in the rhizosphere at root surfaces and in association

with inner root tissues and other habitats (Ahmad et al. 2008). The enhancement of

plant growth using PGPB is well documented (Reed and Glick 2004; Bashan and de

Bashan 2010), and these organisms have also been used to reduce plant stress

associated with phytoremediation strategies for metal-contaminated soils (Reed and

Glick 2005).

PGPB enhance plant growth through different mechanisms, such as (1) enhanc-

ing asymbiotic nitrogen fixation (Khan 2005) or indirectly affecting symbiotic N2

fixation, nodulation, or nodule occupancy (Fuhrmann and Wollum 1989);

(2) reducing ethylene production, allowing plants to develop longer roots, and

better establishment during early stages of growth, due to the synthesis of 1-

aminocyclopropane-1-carboxylate (ACC) deaminase which modulates the level

of ethylene by hydrolyzing ACC, a precursor of ethylene, in ammonia and

α-ketobutyrate (Glick et al. 1998); (3) production of hormones such as auxins,

cytokinins, and gibberellins (Glick 1995; Ahmad et al. 2008); (4) raising the

solubilization of nutrients with resulting increase in the supply of bioavailable

phosphorous and other trace elements for plant nutrition (Glick 1995); and

(5) synthesis of antibiotic and other pathogen-depressing substances such as

siderophores, volatiles, and chelating agents that protect plants from that antago-

nize phytopatogens. (Kamnev and Lelie 2000; Tortora et al. 2011, 2012). These

microorganisms can also increase plant tolerance to environmental stresses such as

flooding (Grichko and Glick 2001), salt stress (Mayak et al. 2004a), and water

deficiency (Mayak et al. 2004b). PGPB are not only significant from an agricultural

point of view, as they can also play an important role in soil remediation strategies,

not only by enhancing growth and successful establishment of plants in

contaminated soils but also by increasing the availability of contaminants, as

reported for heavy metals, namely, Zn and Ni, in Thlaspi caerulescens (Whiting

et al. 2001) and in Alyssum murale and Thlaspi goesingense (Abou-Shanab et al.

2003; Idris et al. 2004). Recently Kumar et al. (2010) observed reduction of

chemical fertilizer by using combination of root-nodulating Sinorhizobium fredii
KCC5 and rhizospheric Pseudomonas fluorescens LPK2.

11.4.2 Siderophores as a Competitive Advantage for Plant
Growth

Given that iron is an essential nutrient, plants have evolved strategies for its

acquisition, which, in dicotyledonous plants such as cowpea (Vigna unguiculata),
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is based on strategy I. Unlike strategy II found in grass monocotyledonous plants,

strategy I does not involve the release of phytosiderophores. Rather, it is

characterized by an enhanced Fe(III) reductase activity, release of reductants such

as phenolics, and acidification of the rhizosphere (Römheld and Marschner 1986).

Furthermore, in strategy I plants, microbial siderophores have been reported to

promote plant growth under Fe deficiency (Crowley et al. 1991).

In a work about enhanced plant growth by siderophores produced by PGPB,

specific strains of the Pseudomonas fluorescens-putida group have been used as

seed inoculants on crop plants to promote growth and increase yields (Kloepper

et al. 1980). Several workers observed that these bacteria rapidly colonized

plant roots of potato, sugar beet, radish, and other crop plants, which caused

statistically significant yield increases in field tests (Maheshwari 2011). These

results prompted them to investigate the mechanism by which plant growth was

enhanced. Most of these workers have concluded that these bacteria exerted their

plant growth-promoting activity by depriving native microflora of iron as they were

able to produce extracellular siderophores which efficiently complexed environ-

mental iron, making it less available to certain native microflora (Kloepper et al.

1980).

Sharma and Johri (2003) reported about maize seeds inoculated with

siderophore-producing pseudomonads with the aim to develop a system suitable

for better iron uptake under iron-stressed conditions. They found that inoculation of

maize seeds with fluorescent Pseudomonas spp. strains GRP3A and PRS showed

significant increase in germination percentage and plant growth. Maximum shoot

and root length and dry weight were observed with 10 μM Fe(III) along with

bacterial inoculants, suggesting that application of siderophore-producing plant

growth-promoting bacterial strains positively influences the crop productivity in

calcareous soil system. Pandey et al. (2005) found Pseudomonas aeruginosa GRC1
having prolific production ability of hydroxamate siderophore in iron-deficient

conditions. The siderophore of GRC1 was purified and characterized. The purified

siderophore appeared to be of pyoverdine type with typical amino acid composi-

tion. In field trials, P. aeruginosa GRC1 enhanced the growth of Brassica
campestris var Pusa Gold (Indian mustard).

Although extensive research has been directed to correct chlorosis (iron

deficiency) by the application of available iron compounds to the soil and by

selective plant breeding to produce Fe-chlorosis-resistant cultivars, during the last

years, the possible implication of siderophores production by PGPB has been

considered as a potential way to improve plant growth, nodulation, and N2 fixation

in iron-deficient conditions. The beneficial effect of using siderophore-producing

strains of Bradyrhizobium sp. and Rhizobium meliloti was reported by O’Hara et al.
(1988) and Gill et al. (1991), respectively. In addition, siderophore-producing

ability might favor the persistence of rhizobia in iron-deficient soils (Lesueur

et al. 1995).
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11.4.3 Importance of Siderophores in Plant Protection Against
Diseases

Nowadays, control of plant diseases is performed by the intensive use of chemical

products that may cause environmental pollution, pathogen resistance, increase in

production costs, and serious risks to the environment and human health. An

alternative of crop protection against pathogens is the biological control exerted

by some PGPB. Several factors can affect the efficacy of siderophores as control

agents against plant pathogens, the most important among them being type of

microorganism, target phytopathogen, and medium composition (Glick and Bashan

1997). Because of their catabolic versatility, their excellent root-colonizing

abilities, and their capacity to produce a wide range of antifungal metabolites, the

soil-borne fluorescent pseudomonads have received particular attention as efficient

biological control agents (Nautiyal et al. 2003). They produce several siderophores

such as pyoverdine, pyochelin, azotobactin, salicylic acid, and pseudomonine

(Dave and Dube 2000; Mercado-Blanco et al. 2001; Labuschagne et al. 2010).

All these siderophores contribute to disease suppression through the competition

for iron.

However, siderophores production in the genus Azospirillum, an important

member of PGPB, is a biocontrol mechanism that has been scarcely studied. Saxena

et al. (1986) and Shah et al. (1992) reported the production of salicylic acid (SA)

among siderophores produced by Azospirillum lipoferum under iron-starved

conditions. Salicylic acid (SA) besides being a compound with siderophore activity

(Visca et al. 1993) is a precursor in the biosynthesis of microbial catechol-type

siderophores, such as yersiniabactin, pyoverdine, and pyochelin (Cox et al. 1981;

Jones et al. 2007; Serino et al. 1995). Moreover, it was demonstrated to play a

crucial role as an endogenous regulator of localized and systemic acquired resis-

tance (SAR) against pathogen infection in many plants (Delaney et al. 1994).

Therefore, SA-producing strains may increase defense mechanisms in plants.

However, bacterial SA participation on plant-induced systemic resistance (ISR) is

still controversial (Siddiqui and Shaukat 2005; Cornelis and Matthisj 2007). It was

hypothesized that bacterial SA excreted to the medium was recognized by plant

roots inducing signals for systemic resistance (Maurhofer et al. 1998), although in

some interactions, it has been proposed that SA may not be the primary signal for

ISR induction (Press et al. 1997), but other siderophores could be implicated

(Siddiqui and Shaukat 2004).

Recently, it was reported that A. brasilense siderophores contain antifungal

activity against Colletotrichum acutatum, the causal agent of anthracnose disease

in strawberry crop (Tortora et al. 2011). They demonstrated that under iron-limiting

conditions, different strains of A. brasilense produce siderophores, exhibiting

different yields and rates of production according to their origin. The bacteria

strains have also been isolated from rhizosphere or inner tissues of strawberry

roots and stolons (Fig. 11.2).
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Chemical assays revealed that A. brasilense REC2 and REC3 secrete catechol-

type siderophores, including SA, detected by TLC coupled with fluorescence

spectroscopy and gas chromatography–mass spectrometry analysis. Siderophores

produced by these strains showed in vitro antifungal activity against C. acutatum
M11. Additionally, this later coincided with results obtained from phytopathologi-

cal tests performed in plants, where reduction of anthracnose symptoms on straw-

berry plants previously inoculated with A. brasilense was observed. These

outcomes suggested that some strains of A. brasilense could act as biocontrol

agent preventing anthracnose disease in strawberry and involved siderophore. In

recent work, the same authors provided evidence that endophytic root colonization

of strawberry plants with A. brasilense strain REC3 confers systemic protection

against C. acutatum M11 by the direct activation of some plant defense reactions

and also primes the plant for a stronger defense reaction when exposed to further

infection (Tortora et al. 2012). Defense mechanisms induced by A. brasilense
REC3 included the reinforcement of plant cell wall by increasing the content of
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Fig. 11.2 Percent of siderophores yield production (SY %) of different A. brasilense strains

isolated from strawberry plants, using CAS agar plates assay. Type strain A. brasilense Sp7 was

used as the control for comparison of A. brasilense isolates tested. The control and rhizosphere

(RLC), root endophytic (REC), and first stolon endophytic (PEC) strains were evaluated after

7 days of incubation at 30 �C
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total soluble phenolic compounds and callose depositions and the transient accu-

mulation of SA. The latter brings about the upregulation of defense-related genes,

such as those encoding pathogenesis-related proteins like PR1, chitinases, and

glucanase. Therefore, the activation of a systemic defense response, together with

the plant growth-promoting effect exerted by A. brasilense REC3 (Pedraza et al.

2010), could, in part, explain the increase of strawberry plants’ tolerance to

anthracnose disease caused by C. acutatum M11.

11.4.4 Biotechnological Application in Agriculture

In agriculture, the increasing introduction of new biotechnological products has

allowed the achievement of higher yields in almost every present-day commercial

crop, leading at the same time to a higher quality and minimizing ecological

damage. In this context, agro-biotechnology may be used to develop environmen-

tally safe and economically sound alternatives to chemical fertilizers and pesticides.

New products are currently being developed through the stimulation of plant self-

defense by the application of PGPB for biological control disease and as plant

growth promoters (biofertilizers), applied as inoculants. In Table 11.1 are shown

several examples of PGPB siderophore producers, some of them already used as

inoculants.

Much research has been dedicated to the development of Pseudomonas
inoculants and other biological products constituted by active metabolites such as

antibiotics and siderophores as biocontrol agents (Mark et al. 2006). Pseudomonas
spp. have been efficiently used for biocontrol in the past decade, and at present time,

there are several commercial products already in the market. For example, there is a

biological product constituted by antimicrobial metabolites such as siderophore

pyoverdine and SA produced by P. aeruginosa PSS, very effective against

Peronospora tabacina in tobacco culture, Alternaria solani in tomato, and

Pseudoperonospora cubensis in cucumber (Dı́az de Villegas 2007).

Microbe-assisted phytoremediation provides plants with natural metal-

solubilizing chelators which do not represent a potential source of environmental

pollution. At the same time as with microbial chelators, plant growth promotion can

be enhanced through bacterially produced phytohormones (e.g., auxins). Recently,

Dimkpa et al. (2008) studied the simultaneous production of siderophores and

auxins by Streptomyces aiming for future application in plant growth and

phytoremediation in a metal-contaminated soil. Standard auxin and siderophore

detection assays indicated that different Streptomyces strains can produce these

metabolites simultaneously. However, Al3+, Cd2+, Cu2+, Fe3+, and Ni2+ or a

combination of Fe3+ and Cd2+ and Fe3+ and Ni2+ affected auxin production nega-

tively, as revealed by spectrophotometry and gas chromatography–mass spectrom-

etry. This effect was more dramatic in a siderophore-deficient mutant. In contrast,

except for Fe, all the metals stimulated siderophores production. Mass spectrometry

showed that siderophore and auxin-containing supernatants from a representative
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Streptomyces species contain three different hydroxamate siderophores, revealing

the individual binding responses of these siderophores to Cd2+ and Ni2+ and, thus,

showing their auxin-stimulating effects. They concluded that siderophores promote

auxin synthesis in the presence of Al3+, Cd2+, Cu2+, and Ni2+ by chelating these

metals. Chelation makes the metals less able to inhibit the synthesis of auxins and

potentially increases the plant growth-promoting effects of auxins, which in turn

enhances the phytoremediation potential of plants.

11.5 Concluding Remarks

Agrochemicals, including fertilizers and pesticides, are extensively used in agricul-

tural production to control pests, diseases, and weeds, minimizing the yield losses

and maintaining high product quality. The increasing cost and the negative impact

of agrochemicals and their degradation products in the environmental are major

ecological and health problems. Therefore, the use of PGPB as biofertilizers or

biocontrol agents, most of which are siderophores producers, is quite promising to

support an eco-friendly and sustainable agriculture.

Table 11.1 Examples of some siderophore producers within the plant growth-promoting bacteria

(PGPB) and their main features

PGPB Main features References

Azotobacter
vinelandii

Produces at least five different siderophores types Bellenger et al.

(2008)

Azotobacter
vinelandii

May produce siderophores to acquire Mo and V for

nitrogen fixation when these metals are limiting

in diazotrophic cultures

Kraepiel et al. (2009)

Pseudomonas
fluorescens

Pseudomonas
putida

Used as seed inoculants on crop plants to promote

growth and increase yields

Kloepper et al.

(1980)

Bradyrhizobium sp.

Rhizobium
meliloti

Improve nodulation and N2 fixation in iron-deficient

conditions

O’Hara et al. (1988),

Gill et al. (1991)

Azospirillum
lipoferum

Produces salicylic acid among other siderophores

under iron-starved conditions

Saxena et al. (1986),

Shah et al. (1992)

Azospirillum
brasilense

Produces siderophores with antifungal activity

against Colletotrichum acutatum, the causal
agent of anthracnose disease in strawberry crop

Tortora et al. (2011)

Pseudomonas
aeruginosa

Produces siderophore pyoverdine and salicylic acid;

very effective against Peronospora tabacina in

tobacco culture, Alternaria solani in tomato, and

Pseudoperonospora cubensis in cucumber

Diaz de Villegas

(2007)

Gluconacetobacter
diazotrophicus

Nitrogen-fixing acetic acid bacterium producing

hydroxamate-type siderophores

Logeshwaran et al.

(2009)
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Literature available revealed that siderophores production is not directly linked

to the plant growth promotion neither to plant protection; siderophores are involved

on iron availability in soil and in the interaction between plant and microorganisms

in this habitat. The importance of siderophores is known since more than 30 years,

and many siderophore-producing bacteria that benefit the crops, promote their

growth, or protect them against pathogens have been reported. However, it is still

not entirely known if this mechanism effectively operates in the interaction and

whether it is the only one. Assuming that siderophore-producing microorganisms

can obtain certain competitive advantages in the soil, where Fe(III) is not easily

available, they are not the only attribute obtaining that benefit as siderophore–iron

complexes may persist, be destroyed, or utilized by other organisms. Nevertheless,

the role that siderophores can play as signal molecules or regulators in the microbe-

plant interactions is evident and opens great perspectives for biotechnological

applications in agriculture.
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Chapter 12

Role of Microbial Siderophores in Improving

Crop Productivity in Wheat

Prashant Sarode, Makarand Rane, Meghraj Kadam,

and Sudhir Chincholkar

12.1 Introduction

At present, approximately 30 plant species account for about 95 % of the world’s

food energy supply (Cakmak et al. 2004), wheat being the third largest food crop

behind corn and rice. To satisfy the food demand, modern cropping systems have

been implemented specifically for cereals and cash crops by using high-yielding

cultivars. This resulted in a dramatic reduction in food diversity and reduction in

micronutrient intake. A micronutrient-poor diet has resulted in two billion people

suffering from micronutrient malnutrition in third world countries (Cakmak et al.

2010). Among the different elements, iron (Fe) plays an important role in plant

growth and development because of its unique physico-chemical properties. In the

same context, a marked iron deficiency in wheat growth and productivity was

observed due to (1) changes in soil salinity, (2) changes in soil pH and (3) anti-

nutritional compounds in the soil such as phytic acid and phenolic (Welch and

Graham 2004). In general, plants employ two strategies for iron absorption. How-

ever, this chapter focuses on a third strategy, i.e. iron solubilization through

microbial siderophores and its utilization by plants, with special reference to

wheat in terms of productivity and value-addition of iron.

12.2 Iron and Its Availability to Plants

Iron, the second-most abundant metal and fourth-most abundant element, is the

most important mineral for living organisms (Crichton et al. 2001). In absentia of

di-oxygen, the redox properties of iron resulted in the availability of a soluble
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ferrous form, which became a crucial component of physiology. As this transition

occurred through a period of a few 100 million years, all living organisms have

evolved strategies for making soluble iron available from insoluble forms (Guerinot

and Yi 1994; Briat et al. 1995; Castignetti and Smarrelli 1986). Due to the ability of

biological iron complexes to transfer electrons, iron is ubiquitous in metabolic

reactions (Chincholkar et al. 2000; Crichton et al. 2001). The most common sources

of iron in soil are the ferric oxides, which are the most stable form of Fe at neutral to

alkaline pH and less than 10�15 M, which is insufficient to meet plant needs

(Schwertmann 1991). Thus, Fe deficiency often limits plant growth, causing agri-

cultural problems and reduced crop yields.

12.2.1 Role of Iron in Plant Systems

Although, Fe acquisition by plants is challenging due to the low solubility of iron in

soil (Guerinot and Yi 1994), iron is an essential element for all organisms (Briat and

Lobréaux 1998). It is required for many vital enzymes, including the cytochromes

of the electron transport chain, as well as a wide range of other biological functions

(Mori 1999). Except in anaerobic life, the physiological importance of iron has

remained prominent. The role of iron in plant metabolism is shown in Table 12.1

(Chincholkar et al. 2000; Hemantaranjan 1995).

12.2.2 Strategies for Iron Acquisition in Plants

In order to avoid iron deficiency, various graminaceous plants biosynthesize and

excrete non-proteinaceous chelating agents through the roots and then take up iron

as a Fe complex by a highly specific uptake system that is enhanced by Fe

deficiency (strategy I plants). However, dicotyledonous plants follow a different

strategy (strategy II) whereby release of protons and reducing substances is com-

bined with enzymatic splitting of chelates as a mechanism of solubilizing soil Fe

and/or taking up chelated Fe (Table 12.2; Marschner et al. 1986; Römheld and

Marschner 1986).

12.2.3 Causes of Iron Deficiency

The concentration of iron in soil ranges from 1 to 6 % (Chincholkar et al. 2000;
Scholtz 1983), which is extraordinarily high compared with other plant nutrients,

yet iron-deficiency in plants is recurrent. Iron deficiency is often seen in high pH

and calcareous soils in arid regions. The reasons for this discrepancy are: (1)

excessive application of chemical fertilizers and pesticides, which include a high
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content of phosphates, NO3, Mg, Mn, Cu, Zn, Co and Ni, (2) irrigation water and (3)

elevated levels of carbonate in soil. All these factors adversely affect pH, salinity

and the C:N ratio. Additionally, root pruning by nematodes, insects and fungal

diseases also cause iron deficiency in plants (Chincholkar et al. 2000; Mohammad

et al. 2009; Mozafar 1995).

12.2.4 Iron Deficiency Symptoms

Due to the role of iron in the development of chloroplasts, which harvest light

energy and transport electrons from water to NADP+ (Briat and Lobréaux 1998),

Table 12.1 Role of iron in different plant biochemical processes

Metabolic pathway Biosynthetic regulation Enzyme cofactor

Nitrogen fixation Chlorophyll Peroxidase

Tri-carboxylic acid (TCA) cycle Toxin Superoxide dismutase

Electron transport chain Vitamins Nitrogenase

Oxidative phosphorylation Antibiotic Hydrogenase

Photosynthesis Cytochrome Glutamate synthase

Respiration Pigment Cytochrome oxidase

Table 12.2 Iron acquisition mechanisms in plants

Strategy Mechanism Example Reference

Strategy

I

Lowering the rhizospheric pH by

H+ exudation

Releasing the organic

reductants

Cucumis safivus Rabotti et al.

(1995)

Secretion of Fe-chelating

phenolics

Lycopersicon esculenrum Chaney et al.

(1992)

Iron acquisition through: Beta vulgaris Gonzalez-

Vallejo

et al.

(2000)

Strategy

II

Secretion and uptake of iron- chelating

non-proteinaceous amino acids, i.e. phytosiderophores

Secretion and uptake of iron-chelating

non-proteinaceous amino acids, i.e.

phytosiderophores

Avenic acid in oat (Avena
sativa L.)

Ma and

Nomoto

(1993)

2-Deoxymugineic acid in

rice (Oryza sativa L.)

Nishiyama

et al.

(2012)

2-Deoxymugineic acid,

mugineic acid in barley

(Hordeum vulgare L.)

Kawai et al.

(1988)

Mugineic acid in wheat

(Triticum aestivum L.)

Ma et al.

(1999)
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iron-limiting conditions lead to a decrease in the concentration of light-harvesting

pigments, resulting in yellowing of pigments (i.e. chlorosis) (Zhang et al. 1991).

Iron-deficient chlorosis leads to poor growth of seedlings and hence low productiv-

ity. Due to the integral role of photosystems I and II, iron-poor conditions lead to:

(1) uncoupling of the light-harvesting complex I (LHCI) antenna from photosystem

I, (2) irreversibly impairment of photosystem II (Bertamini et al. 2004), (3) activity

loss of chlorophyll-biosynthesizing enzymes (Briat and Lobréaux 1998), (4) dimin-

ished protein concentration in the leaves (Bisht et al. 2002; Yousfi et al. 2007), (5)
low photosynthetic rate, (6) poor stomatal conductance and (7) low transpiration

rate (Bertamini et al. 2004).

12.3 Wheat (Triticum aestivum and T. durum)

Wheat is the third-most important food grain crop and, economically, the most

important group of plants in agriculture. In India it contributed about 37 %

(72.06 million metric tonnes) of total food grain production in 2008. The area

under production of wheat has increased from a mere 12.93 million ha in

1960–1961 to about 27 million ha in 2006–2007, with an increase in production

of 11 an 76.37 million metric tonnes in 1960–61 and 1999–2000, respectively. A

step down in production of around 65.1 metric tonnes due to reduced fertilizer

consumption, changed fertilizer policy, poor variety development, global economic

compulsions and trade readjustment was observed in 2003–2004, raising questions

about the reliability of the food security system (Nagarajan 2005). Thus, determin-

ing and evaluating the factors affecting production and remediating them has

become of high importance. Almost all biotic and abiotic stresses create micronu-

trient depletion due to changes in the ionic state, resulting in insolubility.

12.3.1 Role of Metal Ions in Wheat

Metals ions in plants are indispensable for healthy growth and productivity. The

unavailability of metal ions (as well as toxicity due to the presence of excess) is

coped with by metal homeostasis, which involves coordination of metal ion

transporters for uptake, translocation and compartmentalization. Due to

complexing with oxides, metal ions lack free ion conformation (i.e. solubility).

Table 12.3, reviews the requirement of different metal ions and their deficiency

syndromes in wheat plants.
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12.3.2 Use of Iron Chelators for Increasing Wheat Productivity
in the Presence of Iron Deficiency

Several conventional methods are used to manage iron deficiency problems. These

include avoiding mis-management of nutrient imbalance and over-irrigation, the

use of ferrous compounds as a foliar spray and application of iron chelates such as

Fe-EDTA (ethylenediaminetetraacetic acid), Fe-EDDHA (ethylenediaminedi-Q-

hydroxyphenlyacetic acid), Fe-DTPA (diethylenetriaminepentaacetic acid), FeIDHA

(iminodisuccinic acid) and Fe-citrate through drip irrigation (Wallace 1995).

However, the effect of any chelators depends upon: (1) temperature (elevated

temperature reduces stability), (2) dielectric point (increased dielectric point

reduces stability), (3) ionic strength (increased ionic strength reduces stability),

(4) competing complexes and (5) pH (at acidic pH complexation is lower). Along

with this, the effectiveness of chelated Fe compounds in overcoming Fe-deficiency

chlorosis is highly variable depending on the penetration ability through the leaf

Table 12.3 Metal ions and their deficiency symptoms in wheat

Metal

ion

Concentration

required Deficiency symptom Reference

N % 3.7–4.2 % Pale yellow older leaves and poor growth Hu and

Schmidhalter

(2005)

P % 0.2–0.5 % Dark green plants, often with purple color; oldest

leaves may be dark yellow to orange turning

to brown

Neumann and

Römheld

(1999)

K % 1.5 % Pale green plants with a limp or wilted

appearance; bright yellow chlorosis turning

brown along the margins of the oldest leaves

Pettigrew (2008)

S % 0.15 % Pale yellow plants; uniformly yellow leaves

without necrosis

Spencer and

Freney (1980)

Ca% 0.2 % Distorted growth Ehret et al. (1990)

Mg% 0.15 % Green yellow plants with yellow interveinal

chlorosis turning to brown necrosis on the

middle leaves

Chatterjee et al.

(1994)

Cu 5–10 mg kg�1 Male sterility in wheat plants Graham (1975)

Zn 20–70 mg kg�1 Stunted, pale green plants with localized white to

pale yellow chlorosis, turning to brown or

gray necrotic lesions

Yilmaz et al.

(1998)

Mn 35–100 mg kg�1 Green yellow plants with yellow interveinal

chlorosis turning to brown necrosis on the

middle leaves

Chatterjee et al.

(1994)

Fe 50–180 mg kg�1 Yellow leaves with prominently green veins Zhang et al. (1991)

Mo 0.05–0.1 mg kg�1 Paler green leaves Modi and Cairns

(1994)

B 6–10 mg kg�1 Poor growth and male sterility Rerkasem and

Jamjod (1997)
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cuticle and the mobility/translocation following diffusion into leaf tissue

(Schonherr et al. 2005; Fernandez et al. 2006; Rodriguez-Lucena et al. 2010;

Aciksoz et al. 2011). Biofortification using ferric–chelator complexes has shown

elevated crop productivity (Aciksoz et al. 2011).

In a similar approach, Rawat et al. (2011) have demonstrated siderophore

production by all the rhizospheric bacteria of a 120-day wheat crop. In the same

experiment, they found dominance of Bacillus microflora in the rhizosphere

(37.5 %) and rhizoplane (49 %) of a 30-day crop. Similarly, there was dominance

of Pseudomonas population (29.09 %) in the rhizosphere (62.5 %) and rhizoplane

(40 %) of a 90-day crop. Both bacterial genera showed siderophore production.

This suggests metal dissolution through microbial siderophores. The role of ligand

exchange in the uptake of iron from microbial siderophores by gramineous plants

(strategy II) has been postulated (Fig. 12.1) and the ability of groundnut, cotton,

sorghum, sunflower and cucumber (strategy I plants) to acquire Fe from microbial

siderophores has been well documented, although the mechanism is unclear (Beard

and Stoltzfus 2001). This discussion gives the impression that plants rely largely on

microbes for iron. The mutualistic relationship in plant microbe interaction, i.e.

PGPR (plant-growth promoting rhizobacteria) screens out undesirable and/or harm-

ful intruders/opportunists (Wardle 1992; Nguyen 2003).

The effect of PGPR on plants is mediated by direct or indirect mechanisms

(Glick 1995). Direct mechanisms include fixation of atmospheric nitrogen (Bakker

et al. 1991), solubilization of phosphorous (Linderman 1992; Han and Lee 2005),

potassium (Han and Lee 2005), zinc (Saravanan et al. 2007) and iron (Chincholkar

et al. 2000, 2005), enhanced uptake of magnesium and calcium in plants (Lippmann

et al. 1995) and synthesis of phyto-hormones (Frankenberger and Arshad 1995;

Glick 1995). Indirect mechanisms include protection of the plant from pathogens,

which is achieved through antagonism (Rosas 2007), deprivation of space and

nutrient source (Sorensen 1997), iron (Chincholkar et al. 2007), parasitism towards

phytopathogens (Rosas 2007; Rane et al. 2007) and induction of systemic resistance

in the host (Hofte and Bakker 2007; Bloemberg and Lugtenberg 2001; Persello-

Cartieaux et al. 2003).

12.4 Siderophore-Mediated Iron Nutrition of Plants

Although plants have evolved special mechanism for iron nutrition, they often fail

to accumulate sufficient iron to meet nutritional requirements. In Sect. 12.2.2, two

strategies have been mentioned for iron utilization by plants; however, Loper and

Buyer (1991) have proposed a third strategy for iron uptake by plants, i.e. uptake of

microbial Fe(III) siderophores. The role of microbial siderophores have been

previously described in plant pathology as: (1) determinants of biocontrol activity,

(2) virulence factors or ecological determinants and (3) factors influencing the iron

nutrition of plants (Leong 1986; Neilands and Leong 1986). Table 12.4 illustrates
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the activity of siderophoregenic microorganisms and their role as growth promoters

in different plants.

12.4.1 Siderophores and Their Plant Growth-Promoting
Potential

Kloepper et al. (1980) have proved the plant growth-promoting activity of

siderophores produced by strains of the Pseudomonas fluorescens-putida group

because of antagonism to potentially deleterious rhizoplane fungi and bacteria, as

well as improved iron nutrition to the plant. Siderophores produced by

microorganisms were found in soil solutions at concentrations that may influence

the Fe nutrition of plants (Rroco et al. 2003), which suggests the need for soil

microbial activity along with phytosiderophores for satisfactory Fe supply in

sorghum. Similarly, the fluorescent siderophore pyoverdin has been reported for

its role in plant growth stimulation (Hofte et al. 1991). Table 12.4 clearly shows the

influence of different plant growth-promoting organisms. Similar observations

were also reported for the active ingredient, i.e. siderophore (Table 12.5).

12.4.2 Siderophoregenic Microbes and Siderophore-Mediated
Induced Systemic Resistance

Disease can be reduced if defense mechanisms are triggered by leaf-necrosis

pathogens or rhizobacteria prior to infection and these phenomena are commonly

known as systemic acquired resistance (SAR) and induced systemic resistance

(ISR), respectively (Bakker et al. 2003). Various non-pathogenic rhizobacteria

Fig. 12.1 Hypothetical

mechanism of exchange of

iron between microbial and

phytosiderophores for

observed iron nutrition of

plant
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Table 12.4 Siderophoregenic microorganisms having PGPR activity

Siderophoregenic

microorganism Plant Growth effects Reference

Pseudomonas
fluorescens
PGPR1

Pea nut Increase in pod yield, nodule dry weight,

root length and nodule number

Dey et al. (2004)

Pseudomonas
strains
GRP3A and

PRS9

Maize Increase in germination percentage,

shoot and root length and dry weight

Sharma and Johri

(2003)

Bradyrhizobium
japonicum

Soybean Increase in the percentage of

germination, nodulation,

chlorophyll, oil and protein content

and in number of pods and shoot

length and number of branches and

root length

Khandelwal et al.

(2002),

Khandelwal

(2001)

Penicillium
chrysogenuma

Cucumber,

maize

Increased chlorophyll content Hordt et al. (2000)

Kluyvera
ascorbata

Tomato,

canola and

Indian

mustard

Decreased heavy metal toxicity Burd et al. (2000)

Pseudomonas
B10

Potato Increased growth Buyer and Leong

(1986)

Pseudomonas
aeruginosab

Groundnut Improved percentage germination, root

ramification, nodulation, height,

foliage and chlorophyll content

Manwar et al.

(2004)

aFerreted siderophore mixture used under hydroponic conditions
bIncrease in nutritional values of groundnut has also been reported

Table 12.5 Ferric–pyoverdin complex and its plant growth-promoting effect on different plants

Bacterial

strain Plant Effect on plant References

P. putida Arachis hypogeae L.a Enhanced chlorophyll content Jurkevitch et al.

(1988)

P. putida P3 Arachis hypogeae L.b;
Gossypium hirsutum
L.b

Enhanced chlorophyll content;

presence of 59Fe in roots

Bar-Ness et al.

(1991)

P. putida Dianthus caryophyllus L.b Enhanced chlorophyll content;

ferric reductase activity

Duijff et al.

(1994a)

P. putida
WC358

Hordeum vulgare L.b Enhanced chlorophyll content;

presence of 59Fe in the roots

Duijff et al.

(1994b)

P. putida P3 Sorghum bicolor L.b Enhanced chlorophyll content;

uptake of 59Fe by host plant

Bar-Ness et al.

(1991)

P. putida Zea mays L.b Presence of 55Fe in the roots Bar-Ness et al.

(1992)
aGrowing plants in calcareous soil
bGrowing plants in nutrient solution

294 P. Sarode et al.



have been shown to induce systemic resistance in plants and thereby provide

protection against a broad spectrum of phyto-pathogenic fungi, bacteria and viruses

(Table 12.6). Several bacterial determinants have been claimed to produce systemic

resistance, including siderophores, salicylic acid and the O-antigenic side chain of

the bacterial outer membrane protein lipopolysaccharide (LPS). Colonization of

tobacco roots by Pseudomonas fluorescens CHA0 reduces leaf necrosis caused by

tobacco necrosis virus (TNV) and induces physiological changes in the plant (e.g.

an increase in salicylic acid and pathogen-related proteins in the leaves). A

pyoverdin-negative mutant of CHA0 could only partially induce resistance against

TNV (Notz 2002; Uknes et al. 1993). Because bacterial treatments protected potato

tubers from subsequent infections by P. solanacearum, the concept that biocontrol
agents might induce resistance in the host was suggested (Kempe and Sequeira

1983). Similar observations were noted for active biomolecules (i.e. siderophores),

as shown in Table 12.7.

12.5 Siderophore and Siderophorogenic PGPR in Wheat

Productivity

A strong competition in the rhizosphere was exhibited for acquiring iron, and the

high-affinity stability of ferric–siderophore (pyoverdin) chelate and pyoverdin-

producing bacteria were tested for antagonistic activity against phytopathogens,

iron nutrition and growth of wheat plants (Sarode 2007). Pseudomonas putida was

isolated from black cotton soils having siderophoregenic plant growth-promoting

potential (Sarode et al. 2007) and tried for its effect on wheat productivity. For

evaluating amplified productivity, the performance of pyoverdin, a fluorescent

siderophore isolated from P. putida, was evaluated at three scales: (1) plate assay,

(2) pot assay and (3) field trial.

12.5.1 Antagonistic Effect of Pyoverdin Biosynthesized by
P. putida Against Phytopathogens

The presence of siderophoregenic rhizobacteria around the root zone of plants is

known to protect the plant from phytopathogen infestations by competing with

them for iron nutrition (O’Sullivan and O’Gara 1992). In vitro antifungal perfor-

mance of siderophore-rich supernatants produced by P. putida under iron stress

conditions in desferri (pyoverdin) and ferri (Fe + pyoverdin) states have been

determined in standard optimal conditions with different phytopathogens.

Table 12.8 shows the higher inhibitory potency of the supernatant in the absence

of iron than in presence of iron, thus proving the siderophore-induced resistance to

these types of fungal phytopathogens.
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Table 12.6 Siderophoregenic microorganisms reported for biocontrol activity

Siderophore

producer strain Organism controlled by Plant disease Reference

Pseudomonas
fluorescens
EPS62e

Erwinia amylovora Fire blight of pear

trees and

many plants

Cabrefiga et al.
(2007)

P. fluorescens A. niger and S. rolfsii Collar rot and

stem rot of

peanut

Dey et al.

(2004)

Pseudomonas
fluorescens Pf4-
99

Macrophomina phaseolina Charcoal rot of

chickpea

Kumar et al.

(2007)

Rhizobium meliloti Macrophomina phaseolina Charcoal rot in

groundnut

Arora et al.
(2001)

Enterobacter
cloacae

Aspergillus niger, Aspergillus flavus,
Fusarium oxysporum and

Alternaria spp.

– Naphade

(2002)

Pseudomonas
fluorescens

Rhizoctonia solani Rice sheath blight Nagarajkumar

et al.
(2004)

Pseudomonas spp.
GRP3A, PRS9

Colletotrichum dematium, Rhizoctonia
solani and Sclerotium rolfsii

Maize Sharma and

Johri

((2003)

Pseudomonas
sp. EM85

Macrophomina phaseolina, Fusarium
moniliforme and Fusarium
graminearum

Maize root

diseases

Pal et al.

(2001)

Proteus sp. Fusarium oxysporum Mungo beans Barthakur

(2000)

Rhodotorulla
strains

Botrytis cinerea Grey mould on a

wide variety

of host plants

Calvente et al.

(2001)

P. aeruginosa
(GRC1)

Macrophomina phaseolina, Fusarium
oxysporum

– Gupta et al.
(1999)

P. aeruginosa Aspergillus niger, Aspergillus flavus,
Aspergillus oryzae, Fusarium
oxysporum, Sclerotium rolfsii and
Alternaria alternata

– Manwar

(2001)

P. aeruginosa
7NSK2

Pythium Damping-off in

tomato

Buysens et al.

(1996)

P. putida WCS358 Botrytis cinerea Grey mould in

eucalyptus

Ran et al.

(2005)

P. fluorescens 2-
79RN 10

G. graminis var. tritici Take-all in wheat Weller et al.

(1988)

Cumulative effect

of P. fluorescens
and P. putida

Verticillium dahliae Wilt in olive Mercado-

Blanco

et al.

(2004)
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12.5.2 Wheat Germination: Plate Assay

Plate experiments were performed to study the germination ability of wheat variety

Chandosi as a function of various treatments, i.e. pyoverdin, Pseudomonas putida
and Pseudomonas aeruginosa (pyoverdin-producing organism), EDTA and

untreated control. The treated seeds of wheat after 5 days were found to show

more vigorous emergence/germination over untreated controls.

Although, the rate of seed germination was 100 % in all treatments, the number

of roots and intensity of rootlets (Fig. 12.2) was higher for seeds treated with

siderophore and siderophoregenic bacterial strains than for EDTA-treated seeds

and untreated controls, confirming that microbial siderophore alone or in produc-

tion by microbes had better impact than synthetic chelators. Table 12.9 supports the

visual observation, whereby 100 % germination was seen in all the conditions;

however, the average shoot and root length with vigor of germination seemed to be

maintained by the siderophore. The results of siderophore (pyoverdin) treatment

were similar to those for pyoverdin-producing strains, i.e. P. aeruginosa and

P. putida.

12.5.3 Pot Assay for Siderophore-Incorporated Soil

The activity of these iron-chelating biomolecules in a pot assay (i.e. in soil

conditions) revealed the performance of siderophores in the bio-geo state present

around the plant. A pot assay is the laboratory step prior to field application. Under

the natural conditions (i.e. pH 7.5) of black soil for the same variety of wheat

(Chandosi) and with addition of purified pyoverdin (20 mg kg�1 soil), plants

showed vigorous growth in comparison to controls (without addition of

siderophore). After 8 days of growth, no significant difference was observed in

percentage germination and shoot height comparing control with siderophore-

treated seeds, whereas rootlet growth and iron content were improved in roots as

well as in leaves compared to control (Fig. 12.3). However, marked differences in

the iron content in leaves and roots were noted. Thus, along with antagonism,

siderophores increase value-addition of iron in plants. Thus, the pyoverdin-

Table 12.8 Influence of siderophore strains against phytopathogens

Phytopathogen

Inhibition (%)

Absence of iron (0 μM) Presence of iron (50 μM)

Aspergillus niger 80.00 72.00

Aspergillus flavus 32.14 17.86

Fusarium oxysporum 47.67 20.93

Colletotrichum capsicum 50.98 31.37

Values are averages from results obtained in triplicates
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mediated iron nutrition of wheat can be an efficient way for value-added plant

growth.

Sections 12.5.1, 12.5.2 and 12.5.3 described the third strategy of iron acquisition

by plants, i.e. microbial siderophore-mediated iron acquisition. Similarly, the role

Fig. 12.2 Influence of various chelators on wheat germination

Table 12.9 Comparison of plate assays of seeds treated with iron and its chelates after 5 days of

incubation

Sample

Total

number of

seeds

Rate of

germination

(%)

Average

shoot length

(cm)

Number

of roots

Average

root length

(cm)

Rootlet

intensity

Control (with iron) 10 100 5.5 (0.93) 5 (0.00) 6.5 (1.71) +

Synthetic chelator

with iron (Fe-

Na2EDTA)

10 100 6.2 (0.67) 5 (0.00) 6.5 (0.47) ++

Pyoverdin

(siderophore)

with iron

10 100 6.2 (0.86) 6 (0.58) 6.3 (0.79) +++

Pseudomonas
aeruginosa

10 100 6.5 (0.51) 6 (0.43) 6.5 (0.28) +++

Pseudomonas putida 10 100 6.4 (0.63) 6 (0.00) 6.5 (0.37) +++

+ indicates the intensity of appearance of rootlets on the roots. Values in parenthesis give standard

deviation

Fig. 12.3 Effect of siderophore on iron addition in plant leaves and roots in a pot assay
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of siderophore (pyoverdin) in (1) mobilization of iron from phytopathogens, (2)

increased plant vigor and (3) value-addition of iron in plant systems (i.e. in wheat)

has been shown. Thus, use of a siderophoregenic bioinoculant certainly improves

the productivity of wheat.

12.5.4 Field Application (Variety: Chandosi)

The conclusion of Sect. 12.5.3 has been tested in experimental field trials to study

the reliability of siderophoregenic PGPR, here P. aeruginosa and P. putida
treatments in field conditions. Root colonization by many Pseudomonas strains is
well established, whereby the siderophore plays a crucial role (Lugtenberg et al.

2001). The wheat seed bacterization by P. aeruginosa and P. putida strains from

two diverse habitats was tested for their effect on wheat in terms of healthier

germination and productivity. It was revealed that percentage germination in

P. aeruginosa and P. putida (Fig. 12.4) was 85 % and 80 %, respectively, whereas

70 % was recorded in controls (Fig. 12.5). The treatment was found to produce a

significant (P < 0.05) increase in shoot height, root length after 25 days, chloro-

phyll content, weight of spikelets (Fig. 12.6), grain yield and iron content in grain.

As shown in Table 12.10, seeds treated with P. aeruginosa gave maximum produc-

tion, followed by P. putida and least production for controls (no seed treatment).

Pseudomonaswas found to work consistently, which was reflected by an increase in
vegetative vigor, i.e. shoot and root length. Physiological studies indicated that

plants treated with Pseudomonas had increased chlorophyll content. The overall

increase in the grain yield (i.e. productivity) was 13.09 % and 18.27 % with

P. putida and P. aeruginosa, respectively, over control without inoculation. Apart
from these, the iron content of grain was found to be increased over control. As

depicted in Table 12.10, in the field study it was found that in comparison with

untreated control, P. aeruginosa was capable of exerting its maximum effect,

leading to more than 27 % rise in iron content of wheat grains; P. putida was also

instrumental in giving more than 18 % rise in iron content.

12.6 Conclusion

Although, there are no in-vivo studies to show that plants have the ability to take up

iron from iron–siderophore complexes, there are number of in-vitro studies

showing that uptake of iron by plants like groundnut, cotton, sorghum, sunflower

and cucumber from a ferric–siderophore complex chelate has been observed (Beard

and Stoltzfus 2001). Synthetic iron-chelating agents and their effect in terms of

productivity have been described here. Based on the observations and experimental

results, siderophores and siderophoregenic Pseudomonads have been found to: (1)

improve the productivity of wheat in terms of grain yield by 13–18 %, (2) increase
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value-addition of iron in wheat by 18–27 % of total iron content, (3) improve the

vigor of plant growth by means of plant shoot, root length and chlorophyll content

by 12–16 %, 6–11 % and 34–60 %, respectively and (4) induce systemic resistance.

Thus, a profound role in increasing wheat productivity has been established for

siderophores.

Fig. 12.4 Control field of wheat (variety: Chandosi)

Fig. 12.5 Test field of wheat (variety: Chandosi)

Fig. 12.6 Wheat quality (variety: Chandosi)
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Chapter 13

Induction of Plant Defense Response

and Its Impact on Productivity

Louis-Philippe Hamel and Nathalie Beaudoin

13.1 Introduction

Plants are sessile organisms that perpetually encounter a vast array of environmen-

tal conditions and biotic agents, such as insects, nematodes, bacteria, fungi, and

viruses. As some of these encounters may be harmful, plants have evolved a wide

range of adaptations to prevent pathogen invasion and disease while maintaining

growth, development, and reproduction to ensure plant survival. Hence, disease

will only occur in compatible interaction, where the pathogen is able to overcome

the multiple layers of plant defense (Coll et al. 2011). In the battle against invading

microorganisms, such as fungi and bacteria, the first line of plant defense involves

preformed barriers that are mostly directed at preventing physical entry of the

pathogen, such as cell walls that may be embedded or not with lignin or suberin,

waxy cuticles, trichomes, thorns, and bark. In addition to these constitutive

defenses, plants are able to detect invading pathogens and activate complex

defense-signaling cascades that lead to the production of cell wall reinforcement

molecules, toxic compounds, and pathogen-degrading enzymes, thus providing

basal resistance to the infected tissues (Chisholm et al. 2006; Jones and Dangl

2006; Van Loon et al. 2006). Specific recognition of pathogens in incompatible

interactions may further activate a form of programmed cell death that restricts

pathogen growth at the site of infection, the so-called hypersensitive response (HR)

(Coll et al. 2011). While generally quite efficient at preventing pathogen spread and

invasion, these inducible defenses represent energy-demanding processes that may

impend on plant growth, development, and reproduction (Walters and Heil 2007).

Hence, there is increasing evidence that the evolution of defense responses and

developmental processes must have been tightly coordinated to ensure that fitness
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and productivity are maintained even when the plant arsenal is deployed to fight

invaders (Alcázar et al. 2011).

In the first part of this chapter, we will present the various defense responses that

are activated in response to pathogens with a special attention to the molecular

mechanisms involved in the detection of bacterial pathogens and the induction of

plant defense. The second part will highlight the current knowledge on how these

processes may affect plant productivity and fitness and how this should be taken

into account in the development of strategies to enhance disease resistance in

plants.

13.2 Induction of Plant Innate Immunity

In most cases, interactions between plants and microorganisms do not lead to

disease. This is mainly due to the induction of defense response and basal resis-

tance, or plant innate immunity, which may be activated as a general response to

most pathogens (Chisholm et al. 2006; Jones and Dangl 2006). Typical defense

includes the fortification of the cell wall, the production of reactive oxygen species

(ROS), the induction of defense gene expression (e.g., PAL, LOX, CHS, PR-1,
defensin), and the synthesis of antimicrobial molecules (e.g., phytoalexins, other

secondary metabolites). This also coincides with the synthesis of salicylic acid

(SA), jasmonic acid (JA), ethylene, and additional long-distance signals that are

further involved in regulating local as well as systemic defense responses

(Chisholm et al. 2006; Jones and Dangl 2006; Van Loon et al. 2006; Ahmad

et al. 2010).

On the other hand, some pathogens have evolved specific mechanisms to repress

or avoid these induced plant defense mechanisms, leading to a successful infection.

To win this battle, plants have also developed ways of specifically recognizing

pathogen invaders in a process that detects microbial effectors within the plant cell

(Chisholm et al. 2006; Jones and Dangl 2006). As a result, the plant develops a

specific resistance to the invading pathogen, a process that is frequently associated

with the HR (Coll et al. 2011). As described below, both recognition mechanisms

activate overlapping signaling cascades that will lead to the induction of plant

immunity and, under specific conditions, to the HR.

13.2.1 MAMP-Triggered Immunity

Induction of plant defense in response to microorganisms relies on the ability of

plants to recognize microbe-derived molecules called microbe-associated molecu-

lar patterns (MAMPs, also known as PAMPs for pathogen-associated molecular

patterns) (Chisholm et al. 2006; Jones and Dangl 2006; Boller and Felix 2009;

Zipfel 2009; Millet et al. 2010). Detection of MAMPs by pattern-recognition
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receptors (PRRs) activates the plant innate immune response in a process

referred to as MTI for MAMP-triggered immunity (MTI) (Jones and Dangl

2006; Zipfel 2009; Millet et al. 2010) (Fig. 13.1). MAMPs that have been

identified in bacteria comprise the flagellin (Felix et al. 1999; Zipfel et al.

2004), the elongation factor Tu (EF-Tu) (Kunze et al. 2004), lipopolysaccharides

(Newman et al. 1995; Meyer et al. 2001), and peptidoglycans (Felix and Boller 2003;

Gust et al. 2007).

PRRs are transmembrane receptors that include members of the leucine-rich

repeats receptor-like kinase (LRR-RLK) protein family (Chisholm et al. 2006; Coll

et al. 2011), such as the Arabidopsis thaliana FLS2 receptor that recognizes

bacterial flagellin (Gómez-Gómez and Boller 2000; Chinchilla et al. 2006) and

EFR that binds to a conserved 18-amino-acid peptide found in EF-Tu (Zipfel et al.

2006) (see Fig. 13.1a for details). As for many PRRs, each of FLS2 and EFR works

with a coreceptor known as BAK1, which is required for stimulus-induced

heterodimerization with PRR and activation of MTI (Chinchilla et al. 2007, 2009;

Schulze et al. 2010). In addition to Arabidopsis, homologs of these types of

receptors have been identified in a variety of plant species, including rice, tomato,

and poplar (Boller and Felix 2009).

Upon recognition of MAMPs, the concentration of cytosolic calcium ions (Ca2+)

is rapidly elevated, which triggers the oxidative burst characterized by the genera-

tion of signaling molecules, mainly reactive oxygen species (ROS) and nitric oxide

(NO) (Schwessinger and Zipfel 2008; Mazars et al. 2010) (Fig. 13.1b). The Ca2+

signature is also monitored by a group of Ca2+-binding proteins, including

calmodulins (CaMs) and Ca2+-dependent protein kinases (CDPKs) (Boudsocq

et al. 2010). Activation of PRRs also results in the activation of mitogen-activated

protein kinase (MAPK) cascades that use three levels of interacting kinases: the

MAPK themselves, whose activity is induced upon phosphorylation by upstream

MAPK kinases (MAP2Ks), which are in turn activated upon phosphorylation by

upstream MAPKK kinases (MAP3Ks). These proteins operate as signal transmission

modules that amplify stimuli from upstream receptors into appropriate downstream

intracellular responses. These include the activation of transcription factors and a

massive transcriptional reprogramming of regulatory and defense-associated genes

(Asai et al. 2002; Katagiri 2004; Mészáros et al. 2006; Zipfel et al. 2006; Fiil et al.

2009). This basal and large-spectrum resistance is generally sufficient to prevent most

pathogen invasions (Ahmad et al. 2010).

Plants also establish beneficial interactions with microorganisms, such as plant

growth-promoting rhizobacteria (PGPR) and mycorrhizal fungi. These interactions

contribute to the acquisition of nutriments from the soil and stimulate plant growth.

However, the expression of plant defense responses can inhibit the colonization of

plant tissues by beneficial microbes, thus perturbing plant growth and development

(Walters and Heil 2007; Cipollini and Heil 2010). Since MAMPs from beneficial

microbes also have the potential to trigger plant defense responses, some of these

organisms have evolved new molecules and mechanisms that suppress plant

defense and ensure efficient interactions with their hosts (Soto et al. 2009; Hamel

and Beaudoin 2010; Van Hulten et al. 2010).
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Fig. 13.1 MAMP-triggered immunity (MTI) in plants. (a) Schematic view of the conserved

domains found in prototypical pattern-recognition receptors (PRRs) from Arabidopsis thaliana.
FLS2 recognizes flagellin, the main building block of the bacterial flagellum. EFR recognizes the

bacterial elongation factor Tu (EF-Tu), which mediates the entry of the aminoacyl-tRNA into a

free site of the ribosome. BAK1 functions as a coreceptor required for full activation of PRRs. The

number of LRR motifs is indicated in parentheses. (b) During attempted colonization of plant

tissues, bacteria release MAMPs that bind to the extracellular portion of PRRs. Many PRRs

controlling defense against bacteria belong to the leucine-rich repeats receptor-like kinase

(LRR-RLK) family. Following MAMP recognition, LRR-RLKs heterodimerize with a coreceptor,

leading to ion fluxes, membrane depolarization, calcium signaling, and generation of reactive

oxygen species (ROS). Perception of MAMPs also alters protein phosphorylation (P) status,

including the activation of mitogen-activated protein kinase (MAPK) cascades. Activated

MAPKs signal in the cytoplasm (CYT) but also travel to the nucleus (NUC) where they phosphor-

ylate transcription factors (TFs) controlling expression of defense-related genes. Abbreviations:
AC anion channel, AP adaptor protein, APO apoplast, Ca2+ calcium ion, CC calcium channel,

CDPK calcium-dependent protein kinase, CE cis element, CF cofactor protein, NM nuclear

membrane, NOX NADPH oxidase, NP nuclear pore, PM plasma membrane, PR pathogenesis

related, R resistance, RNAPII RNA polymerase II
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13.2.2 Effector-Triggered Immunity

During evolution, some plant pathogens have developed specific mechanisms to

evade or suppress the first line of detection that leads to basal resistance as a result

of MTI. In the case of phytopathogenic bacteria, this suppression activity involves

proteinaceous secretion systems that allow injection of virulence effectors in the

plant cells (Jones and Dangl 2006; Grant et al. 2006; Block et al. 2008; Boller and

He 2009) (Fig. 13.2b).

To counter such strategy, plants have evolved a sophisticated surveillance

mechanism called effector-triggered immunity (ETI), which specifically detects

the presence of microbial effectors within the plant cells using intracellular innate

immune receptors (Jones and Dangl 2006) (Fig. 13.2). Pathogen recognition leads

to the inhibition of pathogen growth and often triggers the HR. This local

programmed cell death proceeds according to the gene-for-gene model, in which

a specific avirulence protein (Avr), the effector, is recognized by a host-specific

receptor protein or resistance (R) protein (Dangl and Jones 2001). However, while

induction of HR is generally associated with ETI, recent results point to the

occasional activation of HR in the case of MTI and in response to particular

environmental stress (Thomma et al. 2011).

Most receptors involved in ETI are members of the nucleotide-binding and

leucine-rich repeat (NB-LRR) disease resistance protein family (Eitas and Dangl

2010) (see Fig. 13.2a for details). Detection of a specific bacterial effector may

occur by direct binding to the NB-LRR or may be indirect via an intermediary

protein (Coll et al. 2011) (Fig. 13.2b). This indirect recognition can be explained by

the guard hypothesis where the effectors modify specific host proteins (guardees or

cofactors) that are monitored for alterations by a particular NB-LRR (guard) (Dangl

and Jones 2001). Alternatively, the guardee can also be used as a molecular decoy

that fools the effector because it is homologous to one of its actual host target

protein (Van der Hoorn and Kamoun 2008). Whether Avr detection goes through

the guard or the decoy hypothesis model, the molecular events that lead to ETI and

HR activation partly overlap those described for MTI (Maleck et al. 2000; Tao et al.

2003; Navarro et al. 2004; Coll et al. 2011). These include a rise in intracellular

calcium levels, production of ROS and NO, activation of MAPK cascades, tran-

scriptional reprogramming of defense-related genes, and synthesis of antimicrobial

compounds. However, it has been proposed that these events would occur more

rapidly and more strongly during ETI when compared to MTI, which could explain

the frequent incidence of HR as a result of ETI (Jones and Dangl 2006; Coll et al.

2011). Nonetheless, genetic evidence suggests that ETI-mediated specific resis-

tance can, at least in some instances, be uncoupled from the induction of HR cell

death (Coll et al. 2011). In these cases, the purpose of HR cell death would not be to

inhibit pathogen growth but may rather occur as a result of a rise in toxic

intermediates aimed at killing pathogens. Alternatively, it was proposed to serve

as an adaptive process for the generation of long-range signals (mediated by ROS or
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Fig. 13.2 Effector-triggered susceptibility (ETS) and effector-triggered immunity (ETI).

(a) Schematic view of a prototypical resistance (R) protein and organization of its conserved

domains. R proteins are defined by a central nucleotide-binding (NB) domain and C-terminal

leucine-rich repeats (LRR). Located between the NB and LRR domains lie two regions known as

the Apaf-1, R proteins, and CED4 (ARC) homology domains. Together with the NB, ARC

domains constitute a nucleotide-binding pocket (NBP) that controls activation of the R (or NB-

LRR) protein. Depending on the N-terminus region, NB-LRRs fall into two broad classes: those

with a Toll and interleukin-1 receptor (TIR) domain are known as the TIR-NB-LRRs (not shown

here), while those without a TIR most often display a coiled-coil (CC) region and are referred to as

the CC-NB-LRRs. In Arabidopsis, R protein RPM1 confers resistance against strains of Pseudo-
monas syringae carrying the avirulence (Avr) gene avrRpm1. (b) Susceptible plant: specialized

microbes have the ability to suppress plant defense through the use of virulence effectors (VE).

Phytopathogenic bacteria rely on proteinaceous channels, including the type three secretion

system (TTSS), to inject a collection of VE into the cytoplasm (CYT) of host cells. VE can then

target host proteins and modify their functions in order to compromise signaling pathways that

regulate activation of plant defense. Resistant plant: to overcome hijacking of defense systems,

plants have evolved intracellular R proteins that function as receptors against VE. R proteins

usually monitor the integrity of host proteins, also called cofactors (CF), that are targeted by

VE. The CF can be an actual virulence target of the effector (guard hypothesis) or may simply look

like one (decoy model). Activation of R proteins leads to a strong defense response that is often

accompanied by a form of localized programmed cell death, the so-called hypersensitive response
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SA) that induce systemic acquired resistance (SAR) to prime plants for secondary

infection (Coll et al. 2011) (see Sect. 13.2.3).

The main drawback of ETI is that it is only effective against specific races of

biotrophic pathogens, which rapidly become under high selective pressure to break

ETI (Ahmad et al. 2010). Hence, some pathogens can overcome ETI by producing

new effectors that suppress ETI or that are no longer recognized by NB-LRR

disease resistance proteins. Some pathogens have also evolved new effectors that

inhibit HR cell death in a mechanism that remains to be elucidated (Coll et al.

2011). This ongoing evolution of plants and pathogens can be viewed as an

everlasting arms race where defeat on one side or the other will promote the

development of new weapons (Jones and Dangl 2006).

13.2.3 Priming for Defense

Localized pathogen attack can trigger the induction of a systemic resistance called

SAR that is associated with the induction of defense responses in distant organs or

even at the whole plant level (Ryals et al. 1996; Sticher et al. 1997; Durrant and

Dong 2004). SAR depends on the synthesis of SA which would participate in the

induction of SAR and of a large set of genes encoding pathogenesis-related (PR)

proteins with antimicrobial activities (Dong 2001; Durrant and Dong 2004; Van

Loon et al. 2006). Root colonization by some nonpathogenic microbes, such as

PGPR, can often activate another form of systemic resistance which is called

induced systemic resistance (ISR) (Van Loon et al. 1998; Pieterse et al. 1998;

Conrath et al. 2006; Van Loon 2007; Van Wees et al. 2008; Conrath 2009). ISR

does not rely on SA synthesis but is characterized by an increased sensitivity to JA

and ethylene (Pieterse et al. 1998; Conrath 2009). In contrast to SAR, ISR is

generally not associated with the upregulation of PR genes. Activation of systemic

defenses by SAR and ISR as well as other selected molecules can also potentiate the

activation of basal resistance in a process called priming (Conrath et al. 2006;

Conrath 2009). Priming agents include plant- or pathogen-derived molecules and

biologically active chemicals, such as SA, JA, vitamin B, cytokinins, and

β-aminobutyric acid (BABA) (Walters and Heil 2007; Conrath 2009; Ahmad

et al. 2010).

After priming, defense response and disease resistance become apparent only

when the primed tissues are challenged by a secondary pathogen infection. In the

primed state, plants can respond faster or more strongly to a secondary infection and

activate amplified defense responses that frequently provide enhanced basal

�

Fig. 13.2 (continued) (HR). Abbreviations: AC anion channel, AP adaptor protein, APO apoplast,

Ca2+ calcium ion, CC calcium channel, CDPK calcium-dependent protein kinase, CE cis element,

MAMP microbe-associated molecular pattern, MAPK mitogen-activated protein kinase, NM
nuclear membrane, NOX NADPH oxidase, NP nuclear pore, NUC nucleus, PM plasma membrane,

PR pathogenesis related, RNAPII RNA polymerase II, TF transcription factor
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resistance not only against the invader but against a broad spectrum of virulent

pathogens and pests (Conrath et al. 2006; Conrath 2009). Interestingly, very little

changes in the expression of defense-related genes or resistance traits are usually

detected as a result of priming alone (Zimmerli et al. 2008). However, a secondary

infection in primed plants generally triggers a strong expression of defense-related

genes that is significantly higher than that occurring as a result of direct induction of

defense. Experimental evidence has shown that mutant plants with defective path-

ogen defense are frequently compromised in gene priming, while mutants with

permanently enhanced immunity are often constitutively primed for enhanced

activation of defense (Jaskiewicz et al. 2011). These results suggest that priming

may enhance the expression of basal resistance that is mediated by MTI (Ahmad

et al. 2010). It was also shown that induction of SAR and ISR that lead to priming

can also reduce lesion formation caused by avirulent pathogens, suggesting that

priming also increases ETI mechanisms. Nevertheless, direct induction of defense

by ETI still provides a more efficient protection against one specific pathogen or

pathogen race that cannot be attained by priming (Ahmad et al. 2010).

Until recently, very few studies had examined the actual molecular mechanisms

that occur during priming. Recent reports have however unraveled some of the key

events that prepare plants for defense during priming (Conrath 2011; Jaskiewicz

et al. 2011). Using the plant model Arabidopsis, it was found that priming with the

SA analog and SAR activator benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl

ester (BTH) increased the expression of two members of the MAPK defense-

signaling cascades, MPK3 and MPK6. These MAPKs accumulate in a dormant

form in primed tissues (Beckers et al. 2009). Upon secondary pathogen challenge,

both kinases were activated in primed plants to a level that was significantly higher

than that found in non-primed plants. This increased activity was also associated

with enhanced expression of PAL and PR1 defense genes and SAR in primed

plants. Interestingly, priming and SAR were not induced in mpk3 mutants but

were only partially compromised in mpk6 mutants, suggesting that MPK3 would

play a major role in priming with a minor (but essential) contribution from MPK6

(Beckers et al. 2009; Conrath 2011).

Modifications in chromatin structure have also been associated with the induc-

tion of priming. In the nucleus, genomic DNA is organized in nucleosomes, where

147 base pairs of DNA are wrapped around an octamer core of two copies of

histones H2A, H2B, H3, and H4. Genes found in nucleosomes that are further

packed by linker histone H1 are transcriptionally inactive. However, covalent

modifications of DNA and histones, such as methylation, acetylation,

ubiquitination, and poly-ADP-ribosylation can alter chromatin architecture and

regulate gene transcription. Active gene expression is generally associated with

an “open” chromatin state in which chromatin modifications facilitate DNA access

to the general transcriptional machinery and to specific transcription factors and co-

activators (Conrath 2011). Recent data suggest that priming activates chromatin

remodeling at defense gene promoters by inducing marks, such as histone methyla-

tion and acetylation, which are generally associated with gene activation (Alvarez-

Venegas et al. 2007; Bruce et al. 2007; March-Diaz et al. 2008; Van den Burg and
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Takken 2009; Alvarez et al. 2010; Jaskiewicz et al. 2011). While priming does not

directly induce the expression of these marked defense genes, a subsequent stress or

infection can substantially increase their expression. It has been proposed that

chromatin remodeling during priming would help recruit the transcriptional

machinery to defense gene promoters, thus providing a rapid and strong defense

gene expression upon secondary infection (Conrath 2011).

13.3 Costs and Benefits of Induced Defense on Plant

Productivity and Fitness

In the fight against pathogens, the induction of plant innate immunity or basal

resistance is much more efficient in protecting from disease than constitutive

preformed defenses. This inducible mechanism has also the advantage of directing

energy toward defense only when it is needed. However, this process implies that

there is some time gap between pathogen recognition and the onset of defense

response that may allow pathogen invasion into plant tissues (Bolton 2009).

Moreover, in the absence of pathogen, several studies have shown that plant

productivity and fitness (growth, seed set, and yield) are perturbed when defense

is induced (reviewed in Walters and Heil 2007; Bolton 2009). These negative

effects may be attributed to the toxicity of the plant’s own defense response and

to hormonal imbalances or may occur if defenses alter interaction with beneficial

organisms, such as PGPR and mycorrhizal fungi (Heil and Baldwin 2002). Most

importantly, the full development of an inducible defense remains an energy-

demanding process that involves the intense expression of an important number

of plant defense genes, antimicrobial compounds, and defense signals which can

divert resources (e.g., assimilates) away from growth and yield (Walters and Heil

2007; Bolton 2009). As an example, it was found that synthesis of the SA-depen-

dent defense protein PR1 is induced in infected leaf tissues to a level that represents

up to 1 % of all soluble proteins and total PR proteins may constitute up to 10 %

(Heil and Bostock 2002; Bolton 2009). Obviously, all nitrogen and carbon atoms

used for PR synthesis as a defense strategy cannot be used for primary metabolism

(Walters and Heil 2007). The mechanisms deployed by plants to manage this

important redistribution of energy toward defense are just beginning to be

unraveled.

13.3.1 Costs of Induced Immunity

While the induction of plant defense seems to represent the best strategy to survive

in a pathogen-infested environment, induced plant defense and resistance clearly

impose a cost on plant growth and development in the absence of challenge. The
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costs of induced immunity are difficult to evaluate in natural environments, as

pleiotropic factors may affect the outcome of plant–pathogen interactions (Bolton

2009). The amplitude and efficiency of defense responses are not only specific to

each plant genotype and pathogen but are also modulated by environmental

conditions (light intensity, temperature, humidity, etc.) and the developmental

stage of the plants (Walters and Heil 2007; Bolton 2009; Ahmad et al. 2010;

Cipollini and Heil 2010; Alcázar et al. 2011). Light itself is required for the

development of a resistance response in a number of plant–pathogen interactions

but can also be required for pathogen virulence and the development of disease

symptoms (Bolton 2009; Roden and Ingle 2009). Moreover, light can stimulate the

oxidative burst and is necessary for the execution of HR in response to several

pathogens (Bolton 2009). The developmental stage also influences the plant

immune response. For example, induction of flowering in mature Arabidopsis
plants is associated with the development of a general resistance (the so-called

age-related resistance or ARR) that inhibits the growth of a variety of virulent

pathogens (Rusterucci et al. 2005; Carviel et al. 2009). However, genetic

perturbations of ARR can delay flowering time, suggesting that both defense and

developmental mechanisms are tightly linked in this type of resistance (Carviel

et al. 2009; Balazadeh et al. 2010).

To minimize the effects on plant productivity that may be caused by environ-

mental variations, most studies on plant defense and resistance mechanisms have

been performed in controlled environments. Data obtained in those conditions

largely support the view that induction of plant defense and resistance can reduce

plant productivity and fitness. For instance, it has been found that constitutive

expression of defense responses in various mutants generally has a negative impact

on plant growth and yield (Heil and Baldwin 2002; Bolton 2009). In particular,

most Arabidopsis mutants in which SA signaling and SA-inducible defense are

constitutively enhanced display growth and developmental defects (Bolton 2009)

(Fig. 13.3). This is the case for cpr (constitutive expresser of PR genes) mutants,

which exhibit enhanced PR gene expression and resistance to pathogens but show

reduced growth and compromised seed production (Bowling et al. 1997; Clarke

et al. 1998). The dnd1 (defense no death 1) mutation, which causes elevated levels

of SA and constitutive systemic resistance, is another example where constitutive

defense also leads to a dwarfed morphology in mature plants (Clough et al. 2000;

Genger et al. 2008). Similarly, both ssi1 and ssi2 (suppressor of salicylic acid
insensitivity of npr1-5) mutants, which are affected in SA-dependent signaling, are

dwarf and display spontaneous cell death lesions (Shah et al. 1999, 2001). Consti-

tutive expression of JA and ethylene-dependent defense responses has a similar

effect on plant growth, as illustrated by the Arabidopsis cev1 (constitutive expres-
sion of VSP1) mutant which exhibits reduced stature when compared to WT (Ellis

and Turner 2001). Other studies have also demonstrated that R gene-mediated

resistance can also be a costly process that negatively impacts plant yield, although

the cost may vary depending on the R genes (Brown 2002, 2003). For example, it

was found that transgenic Arabidopsis plants expressing the gene RPM1, which
confers resistance to Pseudomonas syringae pv. maculicola, have smaller shoots
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and reduced seed yield per plant when compared to susceptible plants (Tian et al.

2003). In contrast, it was shown that a mutant that is no longer able to induce

defense and resistance, such as the Arabidopsis ein2 (ethylene-insensitive 2) mutant

that is defective for ethylene signaling, can exhibit an increase fitness characterized

by increased growth and seed set (Thomma et al. 1999; Geraats et al. 2003)

(Fig. 13.3). Likewise, the growth-promoting effects of beneficial microorganisms

have also been attributed, at least partially, to their ability to suppress inducible

plant defense responses (Van Hulten et al. 2010).

Results obtained from transcriptomics analyses performed in plants infected by

pathogens demonstrate that the induction of defense involves an important

reprogramming of gene expression (Katagiri 2004; Somssich 2007; Major et al.

2010). In addition to defense-related genes, a significant proportion of genes

Fig. 13.3 The delicate balance between plant growth and defense. Predictions on the effects of

induced defense on plant productivity in pathogen-free environment (upper panel) or on pathogen
growth in pathogen-infected plants (lower panel). It is assumed that environmental conditions are

controlled and do not alter plant growth and development or the expression of defense responses.

In the absence of pathogen infection, plant productivity is predicted to be similar in wild-type

(WT) and primed plants, reduced in mutants expressing constitutive inducible defense responses,

and increased in mutants suppressed for inducible defense responses. During pathogen infection

and disease, WT plants induce basal resistance mechanisms, which considerably reduce pathogen

growth. In primed plants, basal resistance is enhanced during the secondary infection, thus

drastically reducing disease symptoms and inhibiting pathogen growth. Mutants expressing

constitutive defense responses display complete resistance to the pathogen. In mutants suppressed

for inducible defense responses, pathogens grow freely and infect all plant tissues
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involved in primary metabolism and various biosynthetic processes are differen-

tially expressed by pathogen infection (Berger et al. 2004; Bolton 2009). Although

some of these changes can occur as a direct response to pathogen attack, there is

growing evidence that several of them are necessary to reallocate energy and

resources to defense. In most plant–pathogen compatible interactions, the induction

of defense is accompanied by downregulation of several photosynthesis-related

genes, a trend that is also correlated with a local reduction in photosynthetic rates

(Bolton 2009). Reduction of photosynthesis may be a plant strategy to shift

resources to defense (Major et al. 2010). Decreased photosynthesis and increasing

demand for energy may in turn initiate the translocation of carbohydrates to

infected tissues. Accordingly, some of the genes involved in the transition from

source-to-sink status, such as genes encoding cellular invertases, are also

upregulated during the induction of defense (Roitsch et al. 2003; Bolton 2009;

Major et al. 2010). Similarly, an important number of genes involved in plant

respiration that converts nutrients to energy, including genes encoding enzymes

of glycolysis and of the tricarboxylic acid (TCA) cycle, are upregulated during the

induction of defense. This also correlates with the observed stimulation of respira-

tion that generally occurs during the resistance response (Bolton 2009; Major et al.

2010).

Interestingly, it was recently shown that it is possible to unlink the constitutive

expression of defense and its negative impact on plant growth and development.

The Arabidopsis mutant cdd1 (constitutive defense without growth defect1) is

characterized by enhanced disease resistance that is associated with constitutive

SA-signaling (Swain et al. 2011). However, in contrast with mutants described

before, expression of constitutive defense in cdd1 has no detectable impact on its

growth and development. These results suggest that plants have the potential to

induce immune responses without perturbing plant growth and development. This

finding will certainly contribute to the development of new strategies that may

constitutively enhance disease protection in crops species without compromising

productivity.

13.3.2 Benefits of Priming

As mentioned earlier, priming for defense provides several advantages over the

direct induction of defense responses by pathogens (Fig. 13.3). Firstly, primed

plants can rapidly activate defense responses upon pathogen challenge, thus reduc-

ing the time lag that occurs between pathogen detection and the direct induction of

defenses. Moreover, defense responses induced in primed plants are stronger, thus

providing enhanced resistance to several pathogens. Finally, since priming

potentiates cellular defense responses rather than directly upregulating defense

mechanisms, this may considerably decrease the energy costs associated with

defense (Conrath et al. 2006; Van Hulten et al. 2006, 2010; Walters and Heil

2007; Conrath 2009; Ahmad et al. 2010). This last advantage has been corroborated
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in the plant model Arabidopsis, where a first group of plants was treated with low

doses of BABA for priming and a second group was treated with higher doses for

the activation of inducible defense responses (Van Hulten et al. 2006). In the

absence of pathogen, priming caused minor reductions in plant growth but did

not alter seed set, while both characteristics were significantly affected as a result of

direct induction of defense response in plants treated with high doses of BABA.

When infected by virulent pathogens, the growth of primed plants was significantly

less affected than that of control or primarily infected plants. The authors concluded

that the costs of priming for defense in Arabidopsis are outweighed by its benefits

under relatively high disease pressure (Van Hulten et al. 2006). However, while

priming may represent some minor costs under conditions of low disease pressure,

it is still less costly than direct induction of defense (Van Hulten et al. 2006).

Interestingly, priming can also enhance defense against herbivorous insects and

abiotic stress and thus contributes to maintaining optimal plant growth and devel-

opment even under harsh or pest-infested environments (Ton et al. 2005; Beckers

and Conrath 2007; Conrath 2009).

Very recently, two different groups have used Arabidopsis to demonstrate that

the effects of priming can also be inherited by a plant progeny and protect

descendants from pathogen attack (Luna et al. 2012; Slaughter et al. 2012). In

both studies, Arabidopsis plants were primed either with BABA or the bacterial

pathogen Pseudomonas syringae pv. tomato (Pst). Descendants of primed plants

that were challenged with Pst or with the (hemi-)biotrophic pathogen Hyaloper-
onospora arabidopsidis exhibited enhanced SA-inducible and defense-related gene
expression as well as increased resistance to both pathogens. While the primed state

was lost in the next generation in one study (Slaughter et al. 2012),

transgenerational priming was maintained over one stress-free generation when

priming was performed with recurrent pathogen stress rather than single

inoculations (Luna et al. 2012). This shows that durability of transgenerational

priming, at least partly, relies on the intensity of the initial priming stress applied on

the parental generation. It was found that the transgenerational primed state is

associated with changes in the chromatin structure and DNA methylation patterns,

suggesting that some of the epigenetic-related changes induced by first-generation

priming can be transmitted to the offspring to maintain the primed state and

enhanced resistance. Moreover, no effects on plant growth, development, or seed

set were observed in the transgenerational primed plants, suggesting that no addi-

tional fitness costs are imposed in the primed progeny (Luna et al. 2012). These

results demonstrate that the benefits of priming can be maintained in future

generations, which makes priming a very promising strategy to increase plant

protection against a wide range of pathogens.
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13.4 Conclusion

Plant diseases cause important reduction in productivity and decrease food supply.

It is estimated that 31–42 % of agricultural production is lost worldwide because of

pests and disease (FAO 2005). With the increasing demand for food supply, the

impact of rapid climate change, and the pressure to restrict pesticides use, there is

an urgent need for the development of high-yield crops with inherent and sustain-

able disease protection. Recent studies have shown that plants usually need to

recognize pathogen invaders with specialized receptors before they can induce

efficient defense responses and disease resistance. Genetic and molecular analyses

have provided a detailed characterization of the molecular events that occur in the

complex signaling cascades that link pathogen detection and defense responses.

Using this information, different strategies have been tested to enhance disease

protection in plants. However, constitutive expression of inducible defense as well

as enhanced R gene-mediated resistance have generally not proven to be suitable

strategies to enhance disease protection in plants as they frequently lead to a

reduction in growth and yield. While usually quite effective against pathogens,

the deployment of inducible defenses represents an energy intensive process that

can divert energy and resources from plant growth, thus reducing productivity and

fitness. For this reason, plants will generally induce defense only if the benefits

outweigh the cost. Nonetheless, the activation of defense response remains almost

always more beneficial in plants under attack when compared with plants that offer

no resistance. Consequently, strategies directed at enhancing disease protection

while sustaining productivity must take into account the intrinsic relationships that

connect the expression of plant defenses and plant growth.

More recently, priming plants for defense has emerged as a promising approach

that may efficiently provide enhanced resistance against various pathogens as well

as other stress without significantly compromising productivity and fitness (Van

Hulten et al. 2006). Since priming can be induced as a result of root interactions

with beneficial rhizobacteria or mycorrhizal fungi, this strategy could also limit the

need for chemical inducers or pesticides (Van Wees et al. 2008; Van Hulten et al.

2010). However, the few studies that have looked at some of the molecular

mechanisms and effects of priming have been performed with plant model species

such as Arabidopsis. Future research will be necessary to determine whether

priming can also lead to the expression of durable and energy-efficient disease

resistance in major crop species. Finally, a better understanding of the molecular

events that prepare plants for defense during priming should also provide new tools

for the design of plants that are able to face the future challenges of rapidly

changing environments.

Acknowledgments L.-P. Hamel is the recipient of a postdoctoral fellowship from the Fonds
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Chapter 14

Plant Growth-Promoting Rhizobacteria

for Plant Immunity

Marilyn Sumayo and Sa-Youl Ghim

14.1 Introduction

Plants possess an array of mechanisms to defend themselves against attack by

different biotic and abiotic stresses. Some of these defenses are innate, while others

become activated only upon interaction with different plants and soil-associated

organisms. The rhizosphere is the soil-plant root interphase consists of the soil

adhering to the root besides the loose soil surrounding it (Babalola 2010) and is a

zone for many diverse and complex microbial-plant interactions. These interactions

can be deleterious or can help improve fitness and soil quality that is essential for

plant growth and development.

Rhizosphere bacteria known as rhizobacteria can utilize the metabolites secreted

by the plant roots as nutrients and can beneficially influence the plant by improving

the extent or quality of plant growth directly or indirectly. The direct promotion by

PGPR involves either by providing plant growth-promoting substances that are

synthesized by the bacterium or by facilitating the uptake of certain plant nutrients

from the environment. The indirect promotion of plant growth occurs when PGPR

lessen or prevent the deleterious effect of one or more phytopathogenic

microorganisms (Ahmad et al. 2006). PGPR suppress plant pathogens through

competition for nutrients and niche (Elad and Baker 1985; Elad and Chet 1987),

antibiosis by producing antibiotics (Pierson and Thomashow 1992), and production

of siderophores which limit iron availability needed for the growth of pathogens

(Kloepper et al. 1980). Other mechanisms include the production of lytic enzymes

such as chitinase and glucanase, volatile production of HCN, and degradation of

toxins produced by the pathogen (Ramamoorthy et al. 2001).
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To survive plants respond adequately by activating appropriate defense

responses (Jones and Dangl 2006). Plants can activate a line of defense referred

to as induced resistance defined as an enhancement of the plant’s defensive

capacity, which acts systematically throughout the plant and is effective against a

broad range of plant attackers (Walters et al. 2007). Induced defense responses

involve fitness cost. Fitness cost must be minimized while optimal level of resis-

tance is achieved. An important effect that is usually associated with direct resis-

tance induction is the growth reduction that results from the toxicity of the

resistance-inducing compounds or from the fitness costs associated with resistance

(Heil and Baldwin 2002). Plants have the ability to acquire this induced resistance

after exposure to biotic stimuli provided by PGPR. This PGPR-plant association

elicits a steady state of defense in plant referred to as rhizobacteria-mediated

induced systemic resistance (ISR) (Choudhary and Johri 2008). ISR is phenotypi-

cally similar to systemic acquired resistance (SAR). SAR is evident by direct

antibiosis between the inducing bacterium and the challenging pathogen

(Fig. 14.1), and a maximum level of SAR is expressed when the inducing organism

causes necrosis (Cameron et al. 1994), whereas ISR by rhizobacteria typically do

not cause any necrotic symptoms on the host plants (Van Loon et al. 1998). The

utilization of SAR-inducing organisms has not been successful under field

conditions, and generally, the duration of protection is less following induction of

a pathogen than that with rhizobacteria-mediated ISR (Wei et al. 1991). Reports

have been published on PGPR as elicitors of tolerance also to abiotic stresses, such

as drought, salt, and nutrient deficiency or excess (Ashraf et al. 2004; Mayak et al.

2004a, b; Figueiredo et al. 2008). PGPR strains utilized as inducers of defense

responses of plants may increase their applicability and other practical and envi-

ronment-friendly ways to deliver plant immunization. This chapter focuses on

PGPR-mediated ISR for plant immunity against biotic and abiotic stresses

minimizing the fitness cost entailed upon defense reaction, therefore without

compromising the overall wellness of the plant.

14.2 Broad Spectrum of PGPR-Mediated Induced Systemic

Resistance

Plant diseases caused by seed and soilborne pathogens are often controlled by using

resistant plants and chemicals. However, resistance does not occur against all

diseases and producing resistant plants takes many years (Lugtenberg and

Kamilalova 2009). Application of chemicals to enhance plant growth or induce

resistance is limited because of the adverse effects of chemical treatment as well as

the difficulty to determine the optimal concentrations to benefit plants (Ryu et al.

2005). PGPR strains initiate ISR against a wide array of plant pathogens causing

fungal, bacterial, and viral diseases (Ramamoorthy et al. 2001).
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PGPR can induce systemic resistance against bacterial, fungal, and viral

diseases, and manifestation of ISR is dependent on the combination of host plant

and bacterial strain (Van Loon et al. 1998). Cucumber seeds treated with Pseudo-
monas putida 89B-27, Flavimonas oryzihabitans INR-5, Serratia marcescens
90–166, and Bacillus pumilus INR-7 reduced the lesion diameter of angular leaf

spot caused by Pseudomonas syringae pv. lachrymans (Liu et al. 1995b; Wei et al.

1996). Beans were protected against halo blight disease caused by Pseudomonas
syringae pv. phaseolicola by seed treatment with P. fluorescens 97. Application of

PGPR strains as seed treatment significantly reduced anthracnose caused by

Colletotrichum orbiculare in cucumber (Wei et al. 1991, 1996). In rice, seed

treatment followed by root dipping and a foliar spray with P. fluorescens Pf1 and

FP7 showed higher induction of ISR against the sheath blight pathogen, Rhizocto-
nia solani (Vidhyasekaran and Muthamilan 1999). Pseudomonas sp. WCS417r

protected carnation plants systemically against Fusarium wilt caused by Fusarium
oxysporum f. sp. dianthi (Van Peer et al. 1991). In sugarcane, PGPR-mediated ISR

was observed against Colletotrichum falcatum causing red rot disease

(Viswanathan and Samiyappan 1999). Pseudomonas putida BTP1 enhanced the

resistance of cucumber to root rot caused by Pythium aphanidermatum and of bean

to Botrytis cinerea (Ongena et al. 1999, 2002). Enterobacter species isolated from

the rhizosphere of Gramineae plants induced systemic resistance of pepper against

Fig. 14.1 Illustration of systemic acquired resistance and induced systemic resistance for

biological control of plant diseases by plant growth-promoting rhizobacteria (PGPR). (SAR)

The bacterium produces some antibiotic molecules killing the pathogens via direct antagonism.

(ISR) Inducing PGPR and pathogen are spatially separated. ISR-related compounds produced by

the bacterium induce systemic signaling resulting to protection of the whole plant
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gray leaf spot in pepper caused by Stemphylium solani (Son et al. 2012). Soil

application of P. fluorescens CHAO induced systemic protection against necrosis

virus (TNV) in tobacco (Maurhofer et al. 1994). Seed treatment with P. fluorescens
89B-27 and S. marcescens 90–166 consistently reduced the number of cucumber

mosaic virus (CMV)-infected plants and delayed the development of symptoms in

cucumber and tomato (Raupach et al. 1996). Bacillus subtilis IN937b, B. pumilus
SE34, and B. amyloliquefaciens IN937a protected tomato plants against leaf spot

caused by cucumber mosaic virus (Zehnder et al. 2000) and against tomato mottle

virus (ToMoV) (Murphy et al. 2000).

PGPR can mediate ISR against various pathogens in different plants (Wei et al.

1996; Ramamoorthy et al. 2001). The same PGPR strain can induce resistance

against multiple pathogens in the same crop or against a wide range of plant

diseases (Table 14.1). P. fluorescens WCS417 protected radish not only against

the fungal root pathogen F. oxysporum f. sp. raphani but also against the avirulent

bacterial leaf pathogen P. syringae pv. tomato and fungal leaf pathogens Alternaria
brassicicola and F. oxysporum (Hoffland et al. 1996). Pseudomonas fluorescens Pf1
induces resistance against Colletotrichum falcatum in sugarcane (Viswanathan

1999) and Pythium aphanidermatum in tomato (Ramamoorthy et al. 1999).

Paenibacillus polymyxa mediate ISR against E. carotovora and P. syringae
pv. maculicola in A. thaliana and against bacterial spot pathogen Xanthomonas
axonopodis pv. vesicatoria in pepper (Ryu et al. 2003; Timmusk and Wagner

1999). Also, P. polymyxa E681 reduced the incidence of damping-off disease

caused by Pythium ultimatum, R. solani, and F. oxysporum in cucumber (Ryu

et al. 2005). S. marcescens strain 90–166 has shown ISR in cucumber against

anthracnose, cucumber mosaic virus, bacterial angular leaf spot, and cucurbit wilt

diseases (Kloepper et al. 1993; Liu et al. 1995a, b). Ochrobactrum lupini
KUDC1013 induced systemic resistance of tobacco against leaf soft rot caused by

E. carotovora subsp. carotovora and of pepper against Xanthomonas axonopodis
pv. vesicatoria (Ham et al. 2009).

PGPR used singly or in mixtures can induce systemic resistance. Mixtures of

PGPR strains Bacillus pumilus INR7, Bacillus subtilis GBO3, and Curtobacterium
flaccumfaciens ME1 provided control against three cucumber pathogens—

Colletotrichum orbiculare (anthracnose), Pseudomonas syringae pv. lachrymans
(angular leaf spot), and Erwinia tracheiphila (cucurbit wilt) (Raupach and

Kloepper 1998). Ochrobactrum lupini KUDC1013, either applied singly or in

combination with other PGPR strains, induced systemic resistance of pepper

against Xanthomonas axonopodis pv. vesicatoria under greenhouse and field

conditions (Hahm et al. 2012). Combinations of PGPR strains were tested for

induced resistance activity against multiple plant diseases: bacterial wilt in tomato

caused by Ralstonia solanacearum, anthracnose in long cayenne pepper caused by

Colletotrichum gloeosporioides, damping-off disease on green kuang futsoi caused

by Ralstonia solani, and cucumber mosaic virus on cucumber. Most mixtures

provided greater disease suppression than individual PGPR strains indicating that

PGPR mixtures can elicit ISR against fungal, bacterial, and viral phytopathogens

(Jetiyanon and Kloepper 2002). These studies evidenced that PGPR-mediated ISR
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has a broad spectrum for disease protection, and selection of strains with potential

ISR activity against multiple pathogens and the method of PGPR application are

important in establishing a good biological control agent.

14.3 Mechanisms of Induced Systemic Resistance

Rhizobacteria-mediated ISR resembles the pathogen-induced SAR (Van Loon et al.

1998). Many PGPR eliciting ISR can also directly inhibit pathogen growth

suggesting that their disease control activity may involve more than one mecha-

nism. Therefore, PGPR-mediated ISR has been proven to be induced and truly

systematic by spatially separating the pathogen and PGPR in plants (Fig. 14.1).

Other criteria useful in comparing the characteristics of rhizobacteria-mediated ISR

to SAR were presented by Van Loon et al. (1998).

14.3.1 Modification in Cell Wall Structural Components
in the Host Plant

PGPR are also known to induce modifications in the plant cell wall as a response to

pathogen attack (Benhamou et al. 1996, 1998; M’Piga et al. 1997). Treatment of

tomato with B. pumilus strain SE 34 induced strengthening of the cell walls against

F. oxysporum f. sp. radicis-lycopersici which protects the fungal site of entry and

therefore delaying the infection process (Benhamou et al. 1998). Lignification of

bean cell walls was observed after treatment with PGPR. Roots of beans inoculated

with Pseudomonas putida had higher lignin contents compared with uninoculated

seedlings. Plants with roots colonized by P. putida gained more weight after

Table 14.1 Broad spectrum of PGPR-mediated induced systemic resistance

Bacterial strain Plant host: disease Reference

Ochrobactrum lupini KUDC
1013

Tobacco: soft rot

Pepper: bacterial leaf spot

Ham et al. (2009)

Serratia marcescens strain 90-

166

Cucumber: anthracnose, cucumber

mosaic virus, bacterial angular leaf

spot, and cucurbit wilt diseases

Kloepper et al. (1993),

Liu et al. (1995a, b)

Paenibacillus polymyxa E681 Cucumber: damping-off disease Ryu et al. (2005)

Pseudomonas fluorescens
strain Pf1

Sugarcane: red rot disease

Tomato: damping-off disease

Ramamoorthy et al.

(1999)

P. fluorescens strain WCS 417 Radish: Fusarium wilt, bacterial

speck, and fungal leaf spot

Hoffland et al. (1996)

Bacillus subtilis IN937b, B.
pumilus SE34, and B.
amyloliquefaciens IN937a

Tomato: leaf spot (cucumber mosaic

virus and tomato mottle virus)

Zehnder et al. (2000),

Murphy et al. (2000)
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inoculation with F. solani f. sp. phaseoli compared with plants grown without

P. putida. Foliar wilting and onset of lesion formation were delayed in plants

inoculated with both P. putida and Fusarium. Protection may involve alteration

of the plant’s defense potential through an increase in lignin in the root tissues

(Anderson and Guerra 1985). Thickening of the tomato cortical cell walls was

observed in reaction to colonization of epidermal or hypodermal cells

by P. fluorescens WCS417 (Duijff et al. 1997). Pre-inoculation of pea roots with

P. fluorescens 63-28R resulted cell wall appositions and papillae upon challenge

inoculation with either P. ultimum or F. oxysporum f. sp. pisi (Benhamou et al.

1996).

14.3.2 Role of Microbial Population and Quorum Sensing

Application of PGPR changes the microbial density and diversity in the rhizosphere

and leads to the alteration of the physiology and the response of the plant host.

Microbial products trigger changes in the exudation from plant roots (Phillips et al.

2004). PGPR-mediated ISR can reduce symptoms without affecting or reducing the

pathogen population (Van Loon 2007). Prior treatment of ACC deaminase

containing Pseudomonas fluorescens CHAO leads to the reduced disease damage

in cucumber against P. ultimum cucumbers and in potato against E. carotovora
pv. carotovora. ACC deaminase lowers ethylene level in the plant therefore acting

together with other mechanisms to reduce symptoms without affecting the popula-

tion density of the pathogen. Changes in microbial population can possibly affect

the population as well as the activity of ISR-inducing PGPR. Quorum sensing (QS)

is population density-dependent regulation of gene expression in bacteria, and

bacterial infection of plants often depends on quorum sensing signals (Miller and

Bassler 2001). A quorum of bacteria is present when the signal concentration

reaches a level capable of triggering changes in the gene expression (Bauer and

Mathesius 2004). In QS, there is exchange of small signal molecules between

bacterial cells. Changes in the population also change the concentration of the QS

signals which affects the QS-regulated bacterial behavior and triggers a diverse

response in plant. Studies have established that plants can detect physiological

levels of bacterial QS signal (N-acyl homoserine lactones) AHLs (Bauer and

Mathesius 2004). Moreover, plants also secrete compounds that mimic the bacterial

signals, thereby affecting QS regulation in bacteria (Givskov et al. 1996). Further

investigations are needed for better understanding of the effects of microbial

population and diversity on the metabolic and ISR-inducing activity of

rhizobacteria.
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14.3.3 Biochemical and Physiological Changes in the Host
Plant

Expression of PGPR-mediated ISR can involve different physiological mechanisms

(Van Loon 2007). The role of plant hormones in regulating induced resistance is

well established. A major distinction between ISR and SAR is the dependence of

the SAR on the accumulation of salicylic acid (SA) (Pettersson and Bååth 2004).

An impressive number of reviews were made on the involvement of SA and JA/ET

pathways on induction of systemic resistance by PGPR (Vallad and Goodmand

2004; Van Loon et al. 1998). ISR activated by PGPR is independent of the SA

pathway and rather involves the jasmonate and ethylene (JA/ET) pathways

(Pieterse et al. 1998). Increase sensitivity to jasmonate and ethylene leads to the

activation of defense genes (Hase et al. 2003; Pieterse and Van Loon 1999). SAR is

dependent of the phytohormone salicylate (salicylic acid) and is associated with the

accumulation of pathogenesis-related (PR) proteins. PGPR-mediated ISR is depen-

dent on ethylene and jasmonate (jasmonic acid) and is not associated with accumu-

lation of PR proteins (Vallad and Goodmand 2004; Van Loon et al. 1998).

14.3.4 Insect–Plant–Rhizobacteria (Tri-Trophic) Interactions

Plants function in a complex multitrophic environment. The spatial and temporal

dynamics of above- and belowground herbivores, plant pathogens, and their

antagonists can differ in space and time. This affects the temporal interaction

strengths and impacts of above- and belowground higher trophic level organisms

on plants (Van der Putten et al. 2001). There is a new insight of understanding the

tri-trophic (insect–plant–PGPR) interactions and its role in inducing systemic

resistance which indicated that plant-mediated aboveground to belowground com-

munication and vice versa is common (Yang et al. 2011; Yi et al. 2011). The effects

of aboveground (AG) insect-elicited plant defense on the resistance expression in

roots and the belowground (BG) microbial community were investigated. Symptom

development caused by the leaf pathogen Xanthomonas axonopodis pv. vesicatoria
(AG) and soilborne Ralstonia solanacearum (BG) in peppers was significantly

reduced in whitefly (Bemisia tabaci)-exposed plants as compared to controls. An

increased expression of plant genes associated with induced resistance (Capsicum
annuum pathogenesis-related protein (CaPR) 1, CaPR4, CaPR10, and Ca protease
inhibitor II) was observed after whitefly exposure indicating that AG whitefly

infestation elicited SA and jasmonic acid signaling in AG and BG.Whitefly feeding

reduced plant size, which usually occurs as a consequence of the high costs of direct

resistance induction. On the other hand, infestation of the leaves manipulated the

population of BG Gram-positive bacteria and fungi which may cause plant growth-

promoting benefits and induction of systemic resistance on the plant (Yang et al.

2011). Defense responses can occur via interactions among organisms; however,
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much more knowledge about the AG-BG interactions, specifically on insect-plant-

PGPR interactions, is required in order to improve our understanding on its role in

inducing plant resistance.

14.4 Determinants Involved in Induction of Systemic

Resistance

Induced systemic resistance mimics the original resistance usually regulated by

dominant single gene. A series of researchers to elucidate the mechanism of ISR

have given valuable insight into its mechanisms.

14.4.1 Salicylic Acid and Other Siderophores

Under iron-limited conditions, several PGPR can produce siderophores.

Siderophore-mediated Fe(III) acquisition is essential for the survival of

microorganisms in the environment as well as for the ability of pathogens to

establish and maintain infection (Weinberg 1978). Suppression of Fusarium wilt

in carnation by Pseudomonas spp. was mediated by the production of siderophore

(Duijff et al. 1993). P. fluorescens CHA0, which produces a pyoverdine

siderophore and SA in culture (Meyer et al. 1992), suppressed necrosis caused by

tobacco necrosis virus (TNV) (Maurhofer et al. 1994). Salicylic acid (SA) is an

intermediate in the biosynthesis of pyochelin siderophores (Ankenbauer and Cox

1988). Several ISR-eliciting bacteria are known to produce salicylic acid (SA)

bacteria under iron-limited conditions (Meyer et al. 1992; Leeman et al. 1996; De

Meyer and Höfte 1997). Some rhizobacteria trigger an SA-dependent signaling

pathway by producing nanogram amounts of SA in the rhizosphere. Leeman et al.

(1996) suggested that the ISR provided by an SA producer P. fluorescens strain

WCS374 in radish to F. oxysporum was due to bacterial SA production. However,

Press et al. (1997) reported that SA produced by Serratia marcescens 90–166 is not
the primary determinant of ISR in cucumber or tobacco. Mini-Tn5phoA mutants,

which did not produce detectable amounts of SA, retained ISR activity in cucumber

against Colletotrichum orbiculare at levels not significantly different from those of

the SA+ parental strain. The ISR-mutant that no longer induced resistance in

cucumber produced SA at concentrations not significantly different from those of

the wild-type strain. Furthermore, results with transgenic tobacco support the

conclusion that microbial SA production by 90–166 was not involved in induced

resistance, since this strain was able to induce NahG-10 tobacco, which expresses

salicylate hydroxylase. For tomato, it was established that it is not the SA which is

produced by this strain that triggers ISR but synthesis of the SA-containing

siderophore pyochelin and the antibiotic pyocyanin. In combination, pyochelin

and pyocyanin induce the formation of oxygen free radicals in the roots, which

triggers SA production in the plant and subsequent activation of an SA-dependent

enhanced resistance (Audenaert et al. 2002).
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14.4.2 Lipopolysaccharides

Lipopolysaccharides (LPS) can be recognized by plants to directly trigger some

plant defense-related responses and can also alter the response of plants to

subsequent bacterial inoculation. This may allow the expression of resistance in

the absence of catastrophic tissue damage (Dow et al. 2000). LPS present in the

outer membrane of PGPR are the major determinants of ISR in certain PGPR

strains. LPS from plant growth-promoting Pseudomonas spp. strain WCS417r

induce resistance in carnation to Fusarium wilt caused by F. oxysporum
f. sp. dianthi (Van Peer and Schippers 1992). The LPS of Pseudomonas fluorescens
induced systemic resistance against Fusarium wilt of radish F. oxysporum
f. sp. raphani. Mutant bacteria lacking the O-antigen side chain are defective in

inducing resistance suggesting that the O-antigen of the LPS is responsible for ISR

(Leeman et al. 1995). P. fluorescens WCS417 and LPS derived from this strain are

both active in Arabidopsis thaliana as in carnation and radish. O-antigen lacking

mutant of this strain still elicited ISR in A. thaliana, which suggests that the

O-antigen cannot be the sole determinant of the response (Van Wees 1999).

Bacterial LPS aids in PGPR colonization, creates a favorable microenvironment,

acts a barrier to plant-defensive compounds, and modulates host reactions

(Newman et al. 1995). Tobacco plants inoculated with purified LPS from PGPR

strains prevented the hypersensitive response (HR) to pathogens and reduced

disease symptoms (Graham et al. 1977; Maurhofer et al. 1994).

14.4.3 Flagellin Perception

Bacterial flagellin is the principal structural component of flagella. In plants,

bacterial flagellins are recognized by surface receptors containing extracellular

leucine-rich repeat (LRR) domain FLS2 (Meindl et al. 2000). Stimulation of the

receptor by flagellin results in induction of an oxidative burst, callose deposition,

and ethylene production, thus inducing defense-related genes such as PR1, PR5,
PAL 1, and GST1 (Gómez-Gómez et al. 1999; Asai et al. 2002). Bacterial flagellin

can act as elicitors of defense response in Arabidopsis. Treatment with a peptide

flg22 that represents the elicitor-active epitope of flagellin induced resistance of

Arabidopsis wild plants against pathogenic bacteria. Mutation in the flagellin

receptor gene FLS2 showed that plants lacking flagellin perception are more

susceptible to pathogenic bacteria carrying flagellin (Zipfel et al. 2004). Also,

analysis of the mutant and transgenic lines revealed that the induced resistance

seems independent of SA, JA, and ET signaling. FLS2 mutant plants are more

susceptible to the pathogen Pseudomonas syringae pv. tomato DC3000 when it is

sprayed on the leaf surface. Thus, flagellin perception restricts bacterial invasion,

probably at an early step, and contributes to the plant’s disease resistance. Plant’s

recognition system for flagellin is highly inclined of animals’ innate immunity
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response. Flagellin together with other molecules recognized by toll-like receptor

(TLR) called pathogen-associated molecular patterns (PAMPs) might serve as an

important signal indicating the presence of foreign or nonself organisms (Gómez-

Gómez and Boller 2002). PAMPs should be investigated on their similar or

complementary functions in controlling and inducing resistance against pathogens.

14.4.4 Volatile Organic Compounds

Volatile organic compounds (VOCs) serve as signaling molecules mediating plant-

microbe interaction. Some PGPR release a blend of volatile components, and plant

growth is stimulated by differences in these volatile blends. PGPR strains Bacillus
subtilis GB03 and Bacillus amyloliquefaciens IN937a released volatile components

2,3-butanediol and acetoin. Chemical and biochemical studies showed that 2,3-

butanediol is an essential bacterial component responsible for airborne chemical

signaling triggering growth promotion in Arabidopsis. Mutants blocked in 2,3-

butanediol and acetoin synthesis were devoid in this growth-promotion capacity

released from promoting the growth of Arabidopsis (Ryu et al. 2003). VOCs not

only promote growth but also can serve as agents for triggering defense responses in

plants. In Arabidopsis seedlings exposed to bacterial volatile blends from Bacillus
subtilis GB03 and Bacillus amyloliquefaciens IN937a, disease severity by the

bacterial pathogen Erwinia carotovora subsp. carotovora was significantly reduced
compared with seedlings not exposed to bacterial volatiles before pathogen inocu-

lation. The major components detected from GBO3 and IN937a were 3-hydroxy-2-

butanone (acetoin) and (2R,3R)-(_)-2,3-butanediol (Ryu et al. 2004). Han et al.

(2006) also reported that the GacS-dependent production of (2R, 3R)-butanediol by

Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resis-

tance against E. carotovora in tobacco. Transgenic lines of B. subtilis emitting

reduced levels of 2,3-butanediol and acetoin have reduced seedling protection

compared with those exposed to VOCs from wild-type bacteria. Mutant and

transgenic plant lines were exposed to bacteria emission containing VOCs in

order to determine the signaling pathways involved. GBO3 triggered ISR indepen-

dent of the SA, NPR1, and JA signaling pathways but is mediated by ET. IN937

activates ISR independent of all of these pathways suggesting that ISR triggered by

VOCs involved other pathways (Ryu et al. 2004). The involvement of PGPR, their

volatile production, and its role in elicitation of ISR should be further exploited.

Volatiles from PGPR-induced plants can possibly elicit airborne induction of plant

resistance. Yi et al. (2009) have studied that lima beans exposed to the air released

from plants that had been spray inoculated with avirulent P. syringae strain 61–18

were found to have induced resistance against P. syringae pv. syringae. No resis-

tance induction in plants that had been exposed to the air was released from

treatment with SAR inducer BTH (Fig. 14.2).
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Fig. 14.2 Induction of systemic resistance via airborne signaling (Yi et al. 2009)
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14.4.5 Secondary Metabolites

PGPR produce a wide range of secondary metabolites that help defend plants

against pathogens. Park et al. (2008) identified an ISR metabolite from

P. chlororaphis O6 against wildfire pathogen in tobacco P. syringae pv. tabaci
(Table 14.2). Based on the spectroscopy data, the metabolite was identified 4-

(aminocarbonyl) phenylacetate (4-ACPA). 4-ACPA applied at 68.0 mM exhibited

ISR activity at a level similar 1.0 mM salicylic acid. Also, production of

phenazines by Pseudomonas chlororaphis O6 induced systemic resistance of

tobacco against E. carotovora subsp. carotovora (Kang et al. 2007). Earlier

Kang et al. (2004) isolated an antifungal secondary metabolite 2-hydroxy-

methyl-chroman-4 produced by endophytic plant growth-promoting

Burkholderia MSSP. P. putida BTP1 produces an N-alkylated benzylamine

derivative that induces systemic resistance in bean, tomato, and cucumber

(Ongena et al. 2005, 2007). Butyl 2-pyrrolidone-5-carboxylate was reported as

metabolite of Klebsiella oxytoca C1036 that caused ISR against leaf infections by

P. carotovorum subsp. carotovorum (SCC1) in tobacco. Recently, the

biosurfactant massetolide A from P. fluorescens SS101 (Tran et al. 2007), a

surfactant lipoprotein produced by Bacillus subtilis (Ongena et al. 2007), other

rhizobacteria produced compound such as N-acyl-L-homoserine lactone

(Schuhegger et al. 2006) were shown to induce resistance in several host plants

against their pathogens. These secondary metabolites produced by PGPR

involved in ISR are good candidates for formulation of effective disease control

and plant growth-promotion products. More work should be devoted in

identifying more ISR-related metabolites and in identification of genes and the

study of environmental factors and pathways regulating the production of these

metabolites.

14.5 Induction of Systemic Resistance Against Abiotic

Stresses

PGPR can augment plant productivity and immunity as well as elicit tolerance to

salt and drought. Burkholderia phytofirmans PsJN increased growth and physio-

logical activity of grapevine at a low temperature (Barka et al. 2006). Yang et al.

(2011) proposed the term induced systemic tolerance (IST) for PGPR-induced

physical and chemical changes in plants resulting to an enhanced tolerance

against abiotic stresses.
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14.5.1 Increased Drought Tolerance upon PGPR Application

Water restriction is one of the abiotic stresses that have a substantial impact on wild

plants and crops yield. Maize seedlings inoculated with plant growth-promoting

Bacillus strains have increased plant biomass, relative water content, leaf water

potential root adhering soil/root tissue ratio, aggregate stability, and decreasing leaf

water loss. There were physiological responses on maize seedlings inoculated with

Bacillus spp. that could lessen the negative effects of drought stress (Vardharajula

et al. 2010). Ali et al. (2009) identified a thermotolerant strain of Pseudomonas
sp. AKM-P6 possessing PGPR activities from the rhizosphere of pigeon pea grown

under semiarid conditions in India. The colonization of plants with rhizobacteria

Pseudomonas chlororaphis 06 induces tolerance to drought stress (Cho et al. 2008).
Inoculation by the PGPR Paenibacillus polymyxa can protect A. thaliana against a

bacterial pathogen and drought stress in a gnotobiotic system. Increased expression

of plant genes associated with abiotic stress (PR-1, HEL, and ATVSP) and genes

associated with biotic stress (ERD15 and RAB18) was induced upon inoculation

(Timmusk and Wagner 1999). The plant hormone ethylene regulates plant growth

under stressful conditions including drought. Ethylene inhibits root elongation and

nodulation, speeds aging, and promotes senescence and abscission. The ethylene

precursor ACC can be degraded by bacterial ACC deaminase that can help rescue

plants back to normal growth (Glick et al. 2007). The Achromobacter piechaudii
ARV8 containing ACC deaminase was found to be both capable of lowering

ethylene production in tomato and pepper and of ameliorating some of the effects

of drought stress (Mayak et al. 2004a). Also, drought stress in the common bean

(Phaseolus vulgaris L.) was alleviated by co-inoculation with Paenibacillus
polymyxa and Rhizobium tropici (Figueiredo et al. 2008). Pseudomonas fluorescens
Pf1 increased the vigor index, fresh weight, and dry weight of green gram (Vigna
radiata) seedlings in vitro. Greater accumulation of proline and greater activity of

stress-related enzymes catalase and peroxidase were found in plants treated with

P. fluorescens Pf1 against water stress compared with uninoculated plants

(Saravanakumar et al. 2011).

Table 14.2 Secondary metabolites involved in induction of systemic resistance

ISR determinant PGPR Host plant Pathogen Reference

N-alkylated benzylamine

derivative

Pseudomonas
putida BTP1

Bean Botrytis cinerea Ongena

et al.

(2005)

4-(aminocarbonyl)

phenylacetate

Pseudomonas
chlororaphis
O6

Tobacco Pseudomonas
syringae
pv. tabaci

Park et al.
(2008)

BPC (butyl 2-pyrrolidone-

5-carboxylate)

Klebsiella
oxytoca
C1036

Tobacco Pectobacterium
carotovorum
subsp.

carotovorum
SCC1

Park et al.
(2009)
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14.5.2 Resistance Against Salt Stress

Plant growth and development are adversely affected by salinity which limits

agricultural production. Salinity affects both vegetative and reproductive develop-

ment of plants in different ways such as osmotic effects, specific ion toxicity, and/or

nutritional disorders (Lauchli and Epstein 1990). Field salinization is a growing

problem worldwide. It was estimated that 10 % of the world’s cropland and as much

as 27 % of the irrigated land may be already affected by salinity (Shannon 1997).

PGPR (Staphylococcus sp. strain I26, Bacillus sp. strain L81, Curtobacterium
sp. strain M84, and Arthrobacter oxidans strain BB1) isolated from Pinus
sp. enhanced the protection of Arabidopsis thaliana against the foliar pathogen

Pseudomonas syringae DC3000 and, except strain M84, increased plant tolerance

to salt stress (Barriuso et al. 2008). Bano and Fatima (2009) had studied the effect of

co-inoculation of PGPR strains that resulted in some positive adaptive responses of

maize plants under high salinity. Inoculation of chickpeas and faba beans with

Azospirillum brasilense significantly reduces the negative effects on plant growth

caused by irrigation with saline water (Hamaoui et al. 2001).

The bacterium Achromobacter piechaudii significantly increased the fresh and

dry weights of tomato seedlings grown in the presence of up to 172 mM NaCl salt.

Ethylene production by tomato seedlings which is supposed to increase upon

challenged with increasing salt concentrations was reduced. Sodium content was

not reduced; however, there was a slight increase in the uptake of phosphorus and

potassium, which possibly contributes in the alleviation of the effect of salt (Mayak

et al. 2004b). Increase in salinity level decreased the growth of maize seedlings, but

this effect was reduced by inoculation with rhizobacterial strains. Pseudomonas
syringae S5, Enterobacter aerogenes S14, and S20 Pseudomonas fluorescens
S20 were effective in promoting the growth and yield of maize, even at high salt

stress. Arora et al. (2006) observed salinity-induced accumulation of poly-β-
hydroxybutyrate in rhizobia indicating its role in cell protection. The relatively

better salt tolerance of inoculated plants was associated with a high K+/Na+ ratio as

well as high relative water and chlorophyll and low proline contents (Nadeem et al.

2007). Exopolysaccharide-producing bacteria could be useful in alleviating salinity

stress in salt-sensitive plants.

Ashraf et al. (2004) reported that inoculation with Aeromonas hydrophila/caviae
and Bacillus insolitus restricted Na+ uptake by roots. The decreased Na+ uptake by

roots of inoculated than uninoculated plants was not attributable to the binding of

Na+ by the RS, or to the ameliorative effects of Ca2+ under salinity but is probably

caused by a reduced passive (apoplasmic) flow of Na+ into the stele due to the

higher proportion of the root zones covered with soil sheaths in inoculated

treatments. Dimpka et al. (2009) did a comprehensive review about the mechanisms

of increased tolerance to abiotic stress by bacterial colonization. Inoculation of

plants with PGPR not only induces plant responses to biotic stress but also

contributes in alleviating the negative effects of abiotic stresses suggesting that

PGPR conferred a cross protection between biotic and abiotic stresses (Timmusk
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and Wagner 1999; Dimpka et al. 2009). The precise mechanisms on the use of

plant growth-promoting bacteria that decrease damage on plants under abiotic

stress are a potentially important adjuvant to agricultural practices. The plant

growth-promoting activity of PGPR and their ability to induce abiotic stress

resistance are important tools in developing abiotic management strategies.

Recently, Maheshwari (2011) has highlighted source of the important issues on

PGPR in plant stress management.

14.6 Concluding Remarks and Future Perspectives

This chapter has shown that PGPR can augment plant immunity through induction

of systemic resistance (ISR). PGPR are considered environmentally friendly, unlike

the overuse of chemical fertilizers. Chemical fertilizers increase yield in agriculture

but are expensive and harmful to the environment. They deplete nonrenewable

energy via side effects, such as leaching out and polluting water basins, destroying

microorganisms and friendly insects, making the crop more susceptible to the attack

of diseases, and reducing soil fertility, thereby causing irreparable damage to the

overall system. PGPR-elicited ISR can aid the growth of plants in environmentally

unfavorable conditions and upon attack by pathogens. Some PGPR are even

capable of inducing resistance in both biotic and abiotic stresses such as drought

and high salinity. The role of PGPR in inducing plant defenses under greenhouse

and field conditions has been established; moreover, a number of PGPR have been

commercially available. Various PGPR factors were shown to elicit ISR. These ISR

determinants from PGPR are diverse ranging from cellular components such as LPS

and flagella to secondary metabolites and VOCs. The mechanisms and pathways in

which PGPR mediates ISR against pathogens are well studied. However, it is more

beneficial to also elucidate the signal transduction pathways engaged by PGPR

under abiotic stress conditions. Plants are often exposed to biotic and abiotic stress

at the same time; therefore, studies on genes involved in ISR induction during both

biotic and abiotic stress are essential in further understanding and maximizing the

potential of PGPR in aiding plant immunity.
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Audenaert K, Pattery T, Cornelis P, Höfte M (2002) Induction of systemic resistance to Botrytis
cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and

pyocyanin. Mol Plant Microbe Interact 15:1147–1156

Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570

Bano A, Fatima M (2009) Salt tolerance in Zea mays (L.) following inoculation with Rhizobium
and Pseudomonas. Biol Fertil Soils 45:405–413

Barka EA, Nowak J, Clement C (2006) Enhancement of chilling resistance of inoculated grapevine

plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain

PsJN. Appl Environ Microbiol 72:7246–7252
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Chapter 15

Integrated Diseases Management in

Groundnut for Sustainable Productivity

Urja Pandya and Meenu Saraf

15.1 Introduction

The food legume crops play an important role in terms of food and nutritional

security and are an important pillar of sustainable food production globally. Food

legume crops are important components of cropping systems and provide an

opportunity to produce diversified food products for human consumption. Inclusion

of these crops into agricultural production systems increases the profitability of

cropping systems globally (Al-Tawaha et al. 2010). Legumes, broadly defined by

their unusual flower structure, podded fruit, and the ability of 88 % of the species

examined to date for nodulation formation with rhizobia (Graham and Vance 2003),

are second only to the Gramineae in their importance to humans. Increased

cultivation of legumes is essential for the regeneration of nutrient-deficient soils

and for providing needed protein, minerals, and vitamins to humans and livestock

(Dubey and Maheshwari 2011). Legumes can be a means of improving the

livelihoods of smallholder farmers around the world. Three oilseed crops, i.e.,

groundnut, soybean, and rapeseed/mustard, together account for over 80 % aggre-

gate of cultivated oilseed outputs. World’s largest edible oil consuming countries

are the USA, China, Brazil, and India. India contributes about 8 % of the world

oilseed production and about 6 % of the global production of oils and fats and

currently is the fifth largest vegetable oil economy in the world, after the USA,

China, Brazil, and Argentina (Ramesh and Hegde 2010). Legumes belong to the

taxonomic family Fabaceae, containing over 18,000 species divided into the three

subfamilies Mimosoideae, Caesalpinioideae, and Papilionoideae. Legume species

have been cultivated for millennia all over the world because of the nutritional

value of their seeds. Among different legumes, soybean (Glycine max L.), chickpea
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(Cicer arietinum L.), common bean (Phaseolus vulgaris L.), groundnut or peanut
(Arachis hypogaea L.), cowpea (Vigna unguiculata L.), and pigeon pea (Cajanus
cajan L.) contribute significantly to the diets of large numbers of people in Asia,

Africa, and South America (Varshney et al. 2007).

Legumes play a vital role as more predominant in the years to come under

climate change due to changes in planting environments, increased levels of abiotic

stresses, increased demand on these crops in consumption, etc. The present level of

productivity of these crops is low due to major constraints as mentioned below (1)

greater susceptibility to biotic and abiotic stresses, (2) they are cultivated on

marginal lands under poor environments, (3) low inputs are often applied to them

by farming communities during the cropping season, (4) they have indeterminate

growth habit and poor genetic yield potential in comparison to cereals and (5) there

is often non-adoption of integrated crop production and management technologies

by the legume growers (Al-Tawaha et al. 2010). Thus, a big challenge is visible to

increase the production/productivity of these crops in future particularly when

changing climates are overlain on their production areas. There is a great need for

focus on developing the role of legumes and their contribution to both the sustain-

able intensification of production and the livelihoods of smallholder farmers in

many parts of the world. Therefore, it will be more appropriate to adopt the simplest

improved approaches which can be implemented in many countries by the farming

communities without much deviation in the existing cropping system to mitigate

the climatic changes. The aim of this chapter is to discuss the potential role of

rhizobacteria as biofertilizer and biocontrol agent for groundnut production for

sustainable productivity.

15.1.1 World Groundnut Production

Groundnut also called peanut is one of the principal oilseed as well as economic

crops of the world. Groundnut is grown on a large scale in almost all the tropical

and subtropical countries of the world. The most important groundnut growing

countries are India, China, Nigeria, Sudan, and USA. It is grown over an area of

24.7 million hectares with a total production of 33 million tonnes in the whole

world. World peanut production totals approximately 35.7 million tonnes during

2011, with India being the world’s second largest producer after China (Fig. 15.1).

Worldwide peanut exports are approximately 2.75 million metric tonnes during

2011. The cultivated peanut (Arachis hypogaea L.) originated in South America

(Bolivia and adjoining countries) (Stalker and Simpson 1995). This crop was grown

widely by native peoples of the New World at the time of European expansion in

the sixteenth century and was subsequently taken to Europe, Africa, Asia, and the

Pacific Islands. Peanut was introduced to the present Southeastern United States

during colonial times. It is currently grown throughout the tropical and warm

temperate regions of the world, with 35.7 million tonnes of worldwide production

in 2006 (FAO Food Outlook 2007).
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Among oilseeds, groundnut (Arachis hypogaea L.) “king of oilseed crops” is a

rainfed crop grown in India mainly during kharif/rainy season. It is also grown

during rabi/summer either under assured irrigation or residual moisture. Among

oilseed crops in India, groundnut accounts for about 50 % of area and 45 % of oil

production. India occupies the first place in acreage and second in production.

Groundnut is cultivated in more than 60 countries of the world. The total production

of groundnut has been inconsistent during the past few years. According to the

reports of FAO (2010), the yield was 10,073 hg ha�1 from an area of 5,470,000 ha

in 2009, whereas it was 11,440 hg ha�1 from an area of 4,930,000 ha in 2010 from a

comparatively less area (Fig. 15.2). A gradual increase in the area harvested since

2007 was not reciprocated in the yield/production. In India, it is grown in 11 states

in an area of 8 million hectares producing over 9 million tonnes of pods. About

88 % area of cultivation and production are confined mainly to Andhra Pradesh,

Karnataka, Maharashtra, and Gujarat states (Arsule and Pande 2012). Gujarat

accounts to 36 % of total production of groundnut in India, and it is the largest

producer in India (Table 15.1). Patil et al. (2009) made an attempt to know the

trends in area, production, and productivity of groundnut crop in Maharashtra.

15.1.2 Importance of Groundnut Cultivation

Seeds yield a nondrying, edible oil used in cooking, margarines, salads, canning, for

deep frying in pastry and bread. Seeds are eaten raw, whole roasted and salted, or

chopped in confectioneries, or ground into peanut butter. Young pods may be

consumed as a vegetable. Young leaves and tips are suitable as a cooked green

vegetable. Other products include ice cream, massage oil, and peanut milk. Ground-

nut (Arachis hypogaea L.) is an important oilseed and food crop. Its seeds are

important source of oil (50 %) and a valuable source of proteins (24.7 %) to

improve human nutrition (Rivlin 2001; Van Damme et al. 1993).

Groundnut oil is also used for pharmaceuticals, soaps, cold creams, cosmetics,

dyes, paints, pomades and lubricants, and emulsions for insect control. Peanut hulls

are used for furfural, fuel, and as filler for fertilizers. Groundnut shell (GS), a

Fig. 15.1 Groundnut seed

yield in different countries

around the world according to

2010 groundnut cultivation

(FAO 2010)
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residue after separation of pod, is available in copious amount in the world. The

crop residue is of low economic value and generally used in burning in gasifiers as a

fuel source or sometimes as manure to increase the soil conditions. The residue

containing a total of 54.4 % total carbohydrate content (dry weight) in its cell wall

makes it an appropriate substrate for bioconversion to fuel ethanol (Gajula et al.

2011). Groundnuts are sold in the local market as boiled unshelled and shelled

roasted nuts, while some are sold in the confectionery trade (Kiriro 1993). The

haulms are either fed to livestock or used in compost or left in the fields as crop

residue (Kiriro and Rachier 1989). As a legume, groundnuts improve soil fertility in

the farming systems by fixing atmospheric nitrogen and also as trap-catch crop in

the management of Striga weed in cereal crop (Kiriro 1993).

Fig. 15.2 Report of groundnut cultivation from 2005 to 2010 in India (FAO 2010)

Table 15.1 State-wise groundnut production in 2011–2012 (Chennakrishnan 2012)

States

2011–2012

(‘000 tonnes)

2010–2011

(‘000 tonnes)

Per cent

change (%)

Gujarat 17.75 18.7 –5.08

Andhra Pradesh 5.5 6 –8.33

Tamil Nadu 3.5 2 75

Maharashtra 1.8 2 –10

Madhya Pradesh 1.8 1.5 20

Punjab, Haryana, and UP 0.8 0.8 –

Others 10.6 10 6
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15.2 Factors Affecting Groundnut Production

Throughout the cultivation of groundnut, from planting to storage, different types

of biotic and abiotic factors form major threats. The abiotic factors include physio-

logical and environmental stresses such as temperature, salinity, and drought, and

the biotic threats include insects, fungi, bacteria, virus, nematodes, etc.

15.2.1 Abiotic Stress

That includes major factors like drought, temperature, and salinity that directly

affect on groundnut production.

15.2.1.1 Drought

Drought stress is particularly critical during flowering and pod-filling stage for yield

and agronomic characters. This would result in drastic reduction in crop yield, and

magnitude of reduction would depend on groundnut varieties. Due to drought

stress, both the yield and product of groundnut are decreased. Pot experiments

were conducted to evaluate four groundnut varieties (TAG-24, TG-26, WEST-20,

and WEST-44) under four regimes of water (100 %, 80 %, 60 %, and 40 %). Under

increasing moisture deficit, dry weight per plant of all varieties was decreased. At

higher water stress level, the variety TG-26 showed maximum reduction in dry

weight 64.37 %, followed by 54.59 % in WEST-20, 42.08 % in WEST-44, and

25.36 % in TAG-24 (Shinde and Laware 2010). Khan et al. (2011) investigated the

physiological and biochemical traits of groundnut cultivar Swat Phalli-96 under

drought stress. Results showed that drought stress significantly reduced flowers

(8 %), fruits (6 %), and pod yield (46 %) as compared to control. Sharad and Nail

(2011) studied the effect of water deficit on early growth and biochemical

constituents of groundnut (K-1375 and R-9251). Drought-induced decrease in

relative water content (44 %), chlorophyll content (35.26 %), and total protein

content (38 %) was significantly higher in R-9251 than K-1375. Recently, Hamidou

et al. (2012) observed assessment of groundnut under combine heat and drought

stress. Results showed that pod yield decrease due to drought stress was 72 % at

high temperature and 55 % at moderate temperature. Pod yield under well-watered

(WW) conditions did not decrease under high temperature conditions. Haulm yield

decrease due to water stress (WS) was 34 % at high temperature and 42 % under

moderate temperature.
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15.2.1.2 Temperature

After groundnut seeds are sown, germination and emergence are primarily deter-

mined by the temperature and soil moisture in the seeding zone. At the optimum

range of temperature and soil moisture, both germination and emergence take place

at a maximum rate. Between their minimum threshold and lower optimum values,

the rates of germination and emergence increase with the increase in temperature

and soil moisture. Above their optimum range, these processes are progressively

slowed down until they completely stop at their respective maximum threshold

values (damaging thresholds). Awal and Ikeda (2002) and Prasad et al. (2006)

reported that base temperature for germination of groundnut is approximately 10 �C
and the optimum temperature for emergence is between 25 and 30 �C.

Groundnut is cultivated between latitudes 40 �N and 40 �S. About 95 % of the

cultivated area is in the semiarid tropics (FAO 2000) where daytime temperatures

often exceed 35 �C during flowering. Such high temperature episodes are likely to

increase in frequency as a result of anthropogenic causes (Houghton et al. 2001).

High-temperature studies conducted so far in groundnuts have shown that

temperatures greater than 34 �C during the reproductive period severely reduce

both peg and pod number (Ketring 1984; Wheeler et al. 1997; Prasad et al. 1999a, b,

2006). The reduction in peg and pod number has been attributed to fewer pollen

grains and poorer pollen viability (Prasad et al. 1999b). Genotypes were found to

range from most tolerant to most susceptible based on both pollen characters and

membrane thermostability. Mean cardinal temperatures (Tmin, Topt and Tmax) aver-

aged over 21 genotypes were 14.1, 30.1, and 43.0 �C for percentage pollen

germination and 14.6, 34.4, and 43.4 �C for maximum pollen tube length. The

genotypes 55-437, ICG 1236, TMV 2, and ICGS 11 can be grouped as tolerant to

high temperature and genotypes Kadiri 3, ICGV 92116, and ICGV 92118 as

susceptible genotypes, based on the cardinal temperatures as reported by Kakani

et al. (2002).

15.2.1.3 Salinity

Soil salinity, saline irrigation water, and also the heavy use of fertilizers salts can

severely restrict plant growth, responsible for foliage damage and even death of the

plants (Taffouo et al. 2010). Saline soil, which causes reductions in yield, is one of

the important abiotic constraints to groundnut production. Pulses in general are

sensitive and have inadequate control over ion uptake, which leads to high internal

salt concentrations and results in plant injury. However, tremendous variability

exists regarding salt tolerance among different species/cultivars in all pulses

(Chauhan and Singh 2000). Mensah et al. (2006) examined effect of different

salinity concentration (0.015, 1.50, 2.60, 4.68, 8.90, and 17 ms cm�1) on five

groundnut genotypes. The results revealed that salinity significantly delayed ger-

mination and also reduced the final percentages at electrical conductivities greater
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than 2.60 mS cm�1. Seedling emergence, radical elongation, plant height, and dry

matter weight also tended to decrease with increasing salinity in all five genotypes.

Gajera et al. (2009) reported effect of chloride-dominant salt stress (0, 20, 40,

80 meq L�1) on groundnut genotypes. Chloride-based salinity decreased the seed-

ling vigor index of all groundnut genotypes, and the decreases were found more in

GG-7, GG-20, and GG-2 genotypes (susceptible group) at 4 and 8 DAS. With

increasing salinity regimes, various metabolites like free amino acid, total sugars,

free fatty acids, and free proline contents were deposited at higher rate in seedlings

of JL-24, GAUG-10, and GG-13 genotypes (tolerant group) compared to suscepti-

ble ones for better osmotic adjustment. Mineral nutrient status and morphological

characteristics changes in peanut (Arachis hypogaea L.) cultivars under salt stress

were studied by Desire et al. (2010) under pot experiments. The results showed that

the salt stress reduced significantly (p < 0.05) the plant height in Pyrieur cultivar

from 40.49 to 21.45 cm, the number of leaves from 11.2 to 7.0, the dry weight of

roots from 0.15 to 0.11 g per plant, the dry weight of stems from 0.37 to 0.15 g per

plant, and the dry weight of leaves from 0.46 to 0.19 g per plant. As salinity

increases, nutrients like K, Mg, Ca, P, N, K, Na, and Ca/Na uptake by peanut

were reduced in Pyrieur, Vanda, and MbiaH cultivars.

15.2.2 Biotic Stress

Among the biotic stresses, the foliar fungal (early leaf spot, late leaf spot, rust), viral

(peanut bud necrosis, stem necrosis), and soil-borne (stem rot, collar rot, and pod rot

complexes) diseases and the insect pests like defoliators (Spodoptera, Helicoverpa,
red hairy caterpillar, and leaf miner), and sucking pests (Jassids, Aphids, Thrips) are

the major ones that limit groundnut production and productivity. In addition, the pre

and postharvest aflatoxin contamination in the kernels and meal also reduces the

quality as well as export value, as shown in Table 15.2.

The major foliar fungal diseases, which are early leaf spot, late leaf spot, and

rust, have magnitude of yield loss that is very high and ranged from 10 to 70 % all

over the world but vary considerably from place to place and between seasons

(Ghewande 1983, 1985, 1990; Subrahmaniyam and Mc Donald 1983). The seed

and seedling diseases (collar rot, stem rot, and root rot) of groundnut cause severe

seedling mortality, resulting in patchy crop stand, and have a devastating effect on

the prospects of a successful groundnut crop. Collar rot is reported to cause 40 %

loss in the crop establishment and yield in Punjab (Chohan 1973). Pande and

Narayana Rao (2000) have observed up to 30 % reductions in plant stand due to

collar rot and estimated 20 % pod yield reduction in the farmers’ fields in the states

of Andhra Pradesh, Karnataka, and Tamil Nadu. Stem rot caused up to 27 % loss in

Uttar Pradesh and in the Deccan Plateau (Singh and Mathur 1953; Pande and

Narayana Rao 2000). Approximately 5–15 % loss in the initial crop stand is due

to seed rot and seedling collapse. Additionally, pod deterioration caused by the soil-

borne pathogenic fungi has been reported to be potentially serious in several

15 Integrated Diseases Management in Groundnut for Sustainable Productivity 357



T
a
b
le

1
5
.2

L
is
t
o
f
m
aj
o
r
d
is
ea
se

o
f
g
ro
u
n
d
n
u
t
an
d
ef
fe
ct
s
o
n
it
s
p
ro
d
u
ct
iv
it
y

T
y
p
e
o
f
d
is
ea
se

C
au
sa
l
o
rg
an
is
m
s

S
y
m
p
to
m
s

R
ef
er
en
ce

F
o
li
ar

fu
n
g
al

d
is
ea
se
,

E
ar
ly

le
af

sp
o
t,
L
at
e

le
af

sp
o
t,
R
u
st

C
er
co
sp
or
a
a
ra
ch
id
ic
ol
a

H
or
i,
P
ha

eo
is
ar
io
ps
is

p
er
so
n
at
a
(B
er
k.
an
d

C
ur
t.
)
v.
A
rx
,
P
uc
ci
n
ia

ar
ac
hi
di
s
Sp

eg

E
ar
ly

le
af

sp
o
t
ca
u
se
s
li
g
h
t
to

d
ar
k
-b
ro
w
n
le
si
o
n
s
o
n
th
e

u
p
p
er

su
rf
ac
e
o
f
th
e
le
afl
et
s
w
it
h
a
ch
lo
ro
ti
c
h
al
o

su
rr
o
u
n
d
in
g
th
e
le
si
o
n
s.
In
fe
ct
ed

le
av
es

fi
n
al
ly

n
ec
ro
ti
ze

an
d
d
ef
o
li
at
e.
L
at
e
le
af

sp
o
t
sy
m
p
to
m
s
o
cc
u
r
as

ci
rc
u
la
r,

d
ar
k
le
si
o
n
s
o
n
th
e
lo
w
er

le
afl
et

su
rf
ac
e
b
u
t
w
it
h
o
u
t
th
e

h
al
o
fo
rm

at
io
n
.
T
h
e
le
av
es

d
ef
o
li
at
e
af
te
r
n
ec
ro
si
s.

D
u
ri
n
g
se
v
er
e
in
fe
ct
io
n
s,
o
v
al

el
o
n
g
at
e
le
si
o
n
s
ar
e

fo
rm

ed
o
n
th
e
p
et
io
le
s
an
d
st
em

s.
L
ea
f
ru
st
o
f
g
ro
u
n
d
n
u
t

ca
u
se
s
o
ra
n
g
e-
co
lo
re
d
p
u
st
u
le
s
o
n
th
e
lo
w
er
su
rf
ac
e
an
d
,

in
se
v
er
e
ca
se
s,
o
n
th
e
u
p
p
er

su
rf
ac
e
o
f
le
afl
et
s

S
u
b
ra
h
m
an
y
am

et
al
.
(1
9
9
7
),

P
an
d
e
et

al
.
(2
0
0
1
),
A
m
b
an
g

et
al
.
(2
0
1
1
),
B
d
li
y
a
an
d
A
lk
al
i

(2
0
1
0
),
K
h
ed
ik
ar

et
al
.
(2
0
1
0
)

B
ac
te
ri
al

d
is
ea
se
,

B
ac
te
ri
al

w
il
t

P
se
u
do

m
o
na

s
so
la
na

ce
ar
um

(S
m
it
h
)

Y
o
u
n
g
in
fe
ct
ed

p
la
n
ts
sh
o
w
su
d
d
en

w
il
ti
n
g
o
f
st
em

an
d

fo
li
ag
e
w
it
h
le
av
es

o
n
d
ea
d
p
la
n
ts
re
m
ai
n
in
g
g
re
en
.

D
y
in
g
b
ra
n
ch
es

o
ft
en

cu
rl
to

fo
rm

a
“s
h
ep
h
er
d
’s
cr
o
o
k
.”

T
h
e
d
is
ea
se

ca
n
b
e
id
en
ti
fi
ed

b
y
d
ar
k
-b
ro
w
n
sp
o
ts
in

th
e

x
y
le
m

an
d
p
it
h

H
o
n
g
et

al
.
(1
9
9
9
)

S
o
il
-b
o
rn
e
fu
n
g
al

d
is
ea
se
,
B
ro
w
n

b
lo
tc
h
,
D
am

p
in
g
o
ff
,

R
o
o
t
ro
t,
C
ro
w
n
ro
t,

S
te
m

ro
t

C
o
ll
et
ot
ri
ch
um

ca
p
si
ci
,

P
yt
hi
u
m
sp
p
.,

P
h
yt
op

ht
ho

ra
sp
p
.,

F
u
sa
ri
um

so
la
n
i
(M

a
rt
)

Sa
cc
,
A
sp
er
gi
ll
u
s
ni
ge
r,

Sc
le
ro
ti
u
m

ro
lf
si
i

B
ro
w
n
b
lo
tc
h
d
is
ea
se
s
st
ar
ts
as

a
ti
n
y
,
li
g
h
t
b
ro
w
n
sp
o
t
o
n

th
e
u
p
p
er
le
af
su
rf
ac
e.
U
n
d
er
h
u
m
id
co
n
d
it
io
n
s,
th
e
sp
o
ts

en
la
rg
e
v
er
y
fa
st
an
d
co
al
es
ce
,
an
d
th
e
en
ti
re

le
af
su
rf
ac
e

m
ig
h
t
b
ec
o
m
e
b
lo
tc
h
ed

w
it
h
o
u
t
n
ec
es
sa
ri
ly

re
su
lt
in
g
in

d
ef
o
li
at
io
n
.
In

d
am

p
in
g
-o
ff
d
is
ea
se
,
st
em

is
af
fe
ct
ed

an
d

th
at
p
o
rt
io
n
b
ec
o
m
es

co
n
st
ri
ct
ed

an
d
w
ea
k
,
in
ca
p
ab
le
o
f

b
ea
ri
n
g
th
e
lo
ad

o
f
th
e
u
p
p
er

p
o
rt
io
n
.
A
s
a
re
su
lt
,
th
e

se
ed
li
n
g
s
to
p
p
le

d
o
w
n
an
d
d
ie
.
T
h
e
af
fe
ct
ed

ti
ss
u
es

d
ie
,

d
ec
o
m
p
o
se

to
g
re
at
er

ex
te
n
t,
an
d
tu
rn

b
ro
w
n
.
In

ro
o
t
ro
t,

w
at
er
-s
o
ak
ed

n
ec
ro
ti
c
sp
o
ts
ap
p
ea
r
o
n
th
e
st
em

ju
st

ab
o
v
e
th
e
g
ro
u
n
d
le
v
el
.
P
o
d
in
fe
ct
io
n
le
ad
s
to

b
la
ck
en
in
g
o
f
th
e
sh
el
ls
,
an
d
sc
le
ro
ti
a
ca
n
b
e
se
en

in
si
d
e

th
e
sh
el
ls
.I
n
cr
o
w
n
ro
t,
la
rg
e
le
si
o
n
s
d
ev
el
o
p
o
n
th
e
st
em

b
el
o
w
th
e
so
il
an
d
sp
re
ad

u
p
w
ar
d
s
al
o
n
g
th
e
b
ra
n
ch
es

ca
u
si
n
g
d
ro
o
p
in
g
o
f
le
av
es
,
w
il
ti
n
g
an
d
d
ea
th

o
f
th
e

p
la
n
ts
.
In

st
em

ro
t,
le
si
o
n
s
o
n
th
e
d
ev
el
o
p
in
g
p
eg
s
ca
n

re
ta
rd

p
o
d
d
ev
el
o
p
m
en
t
an
d
se
ed
s
in

th
e
in
fe
ct
ed

p
o
d
s

sh
o
w
a
ch
ar
ac
te
ri
st
ic

b
lu
is
h
-g
ra
y
d
is
co
lo
ra
ti
o
n

O
b
ag
w
u
(2
0
0
1
),
Ih
ej
ir
ik
a
et

al
.

(2
0
1
0
),
A
h
m
ed

an
d
Z
am

an

(2
0
1
2
),
R
as
h
ee
d
et

al
.
(2
0
0
4
),

G
an
es
an

et
al
.
(2
0
0
7
)

358 U. Pandya and M. Saraf



V
ir
al

d
is
ea
se
,
B
u
d

n
ec
ro
si
s
d
is
ea
se

B
u
d
ne
cr
os
is
vi
ru
s

D
is
ea
se

fi
rs
t
ap
p
ea
rs
o
n
y
o
u
n
g
le
afl
et
s
as

ch
lo
ro
ti
c
sp
o
ts
o
r

m
o
tt
li
n
g
th
at

m
ay

d
ev
el
o
p
in
to

ch
lo
ro
ti
c
an
d
n
ec
ro
ti
c

ri
n
g
s
an
d
st
re
ak
s.
T
er
m
in
al

b
u
d
n
ec
ro
si
s
o
cc
u
rs
w
h
en

te
m
p
er
at
u
re

is
re
la
ti
v
el
y
h
ig
h
.
A
s
p
la
n
t
m
at
u
re
s,
it

b
ec
o
m
es

st
u
n
te
d
w
it
h
sh
o
rt
in
te
rn
o
d
es

an
d
p
ro
li
fe
ra
ti
o
n

o
f
ax
il
la
ry

sh
o
o
ts

G
o
p
al

et
al
.
(2
0
1
0
,
2
0
1
1
),
G
u
p
ta

an
d
S
h
u
k
la

(2
0
1
1
)

N
em

at
o
d
e
d
is
ea
se
,

R
o
o
t-
k
n
o
t
d
is
ea
se

M
el
oi
do

gy
ne

sp
p
.

G
al
ls
d
ev
el
o
p
in
to

v
ar
io
u
s
si
ze
s
re
su
lt
in
g
fr
o
m

an
in
te
rn
al

sw
el
li
n
g
fr
o
m

th
e
ro
o
t
ti
ss
u
e.
In
fe
ct
ed

p
o
d
s
d
ev
el
o
p

k
n
o
b
s,
p
ro
tu
b
er
an
ce
s,
o
r
sm

al
l
w
ar
ts

E
is
en
b
ac
k
et

al
.
(2
0
0
3
)

In
se
ct
s,
R
ed

h
ai
ry

ca
te
rp
il
la
rs

A
m
sa
ct
a
al
b
is
tr
ig
a
,

A
.
m
o
or
ei

C
at
er
p
il
la
rs

ca
u
se

d
ef
o
li
at
io
n
o
f
th
e
cr
o
p
—

al
l
th
e
le
av
es

ea
te
n
aw

ay
le
av
in
g
th
e
m
ai
n
st
em

al
o
n
e

G
h
ew

an
d
e
an
d
N
an
d
g
o
p
al

(2
0
0
9
)

G
ro
u
n
d
n
u
t
le
af

m
in
er

A
p
ro
a
er
em

a
m
od

ic
el
la

Y
o
u
n
g
la
rv
ae

in
it
ia
ll
y
m
in
e
in
to

th
e
le
afl
et
s,
fe
ed

o
n
th
e

m
es
o
p
h
y
ll
,
an
d
fo
rm

sm
al
l
b
ro
w
n
b
lo
tc
h
es

o
n
th
e
le
af
.

L
at
er

st
ag
es

la
rv
ae

w
eb

th
e
le
afl
et
s
to
g
et
h
er

an
d
fe
ed

o
n

th
em

,
re
m
ai
n
in
g
w
it
h
in

th
e
fo
ld
s.
S
ev
er
el
y
at
ta
ck
ed

fi
el
d

lo
o
k
s
“b
u
rn
t”

fr
o
m

a
d
is
ta
n
ce

W
ig
h
tm

an
an
d
R
ao

(1
9
9
3
)

B
ih
ar

h
ai
ry

ca
te
rp
il
la
r

Sp
il
os
om

a
(D

ia
cr
is
ia
)

ob
li
qu

a
Y
o
u
n
g
la
rv
ae

fe
ed

g
re
g
ar
io
u
sl
y
m
o
st
ly

o
n
th
e
u
n
d
er

su
rf
ac
e

o
f
th
e
le
av
es
,
fe
ed

o
n
le
av
es

an
d
ca
u
se

lo
ss

b
y
w
ay

o
f

d
ef
o
li
at
io
n
.
In

se
v
er
e
ca
se
s,
o
n
ly

st
em

s
ar
e
le
ft
b
eh
in
d

W
ig
h
tm

an
an
d
R
ao

(1
9
9
3
)

G
ra
m

p
o
d
b
o
re
r

H
el
ic
ov
er
pa

ar
m
ig
er
a

L
ar
v
ae

fe
ed

o
n
th
e
fo
li
ag
e
an
d
p
re
fe
r
fl
o
w
er
s
an
d
b
u
d
s.

W
h
en

te
n
d
er

le
af

b
u
d
s
ar
e
ea
te
n
,
sy
m
m
et
ri
ca
l
h
o
le
s
o
r

cu
tt
in
g
s
ca
n
b
e
se
en

u
p
o
n
u
n
fo
ld
in
g
o
f
le
afl
et
s

W
ig
h
tm

an
an
d
R
ao

(1
9
9
3
)

G
ro
u
n
d
n
u
t
b
u
d
b
o
re
r

A
na

rs
ia

ep
hi
p
pi
as

T
h
e
la
rv
a
b
o
re
s
in
to

th
e
te
rm

in
al
b
u
d
s
an
d
sh
o
o
ts
an
d
ti
p
o
f

th
e
st
em

.
T
h
e
te
n
d
er

le
afl
et
s
em

er
g
in
g
fr
o
m

ce
n
tr
al

sp
in
d
le

w
il
l
sh
o
w
sh
o
t-
h
o
le

sy
m
p
to
m
s
in
it
ia
ll
y
.
In

se
v
er
e
in
fe
st
at
io
n
,
em

er
g
in
g
le
afl
et
s
w
il
l
h
av
e
o
n
ly

th
e

m
id
ri
b
s
o
r
se
v
er
al

o
b
lo
n
g
fe
ed
in
g
h
o
le
s

W
ig
h
tm

an
an
d
R
ao

(1
9
9
3
)

A
p
h
id
s

A
ph

is
cr
ac
ci
vo
ra

W
il
ti
n
g
o
f
te
n
d
er

sh
o
o
ts
d
u
ri
n
g
h
o
t
w
ea
th
er
.
S
tu
n
ti
n
g
an
d

d
is
to
rt
io
n
o
f
th
e
fo
li
ag
e
an
d
st
em

s.
T
h
ey

ex
cr
et
e

h
o
n
ey
d
ew

o
n
w
h
ic
h
so
o
ty

m
o
ld
s
fl
o
w
fo
rm

in
g
a
b
la
ck

co
at
in
g
.
A
ct

as
v
ec
to
r
fo
r
p
ea
n
u
t
st
ri
p
e
v
ir
u
s
an
d

g
ro
u
n
d
n
u
t
ro
se
tt
e
v
ir
u
s
co
m
p
le
x

W
ig
h
tm

an
an
d
R
ao

(1
9
9
3
)

15 Integrated Diseases Management in Groundnut for Sustainable Productivity 359



farmers’ fields in Andhra Pradesh, Tamil Nadu, and Karnataka (Pande and

Narayana Rao 2000). In India, bud necrosis disease caused yield losses up to

50 % (Chohan 1978). In the case of late infection caused by clump disease, losses

up to 60 % have been recorded (Ghanekar 1980). The root-knot nematodes

(Meloidogyne spp.) are the most important nematode species causing damage

ranging from 20 to 90 % in infested fields of groundnut (Rodrigues-Kabana 1984).

15.3 Microbial Interactions with Groundnut Crop

Soil bacteria are very important in biogeochemical cycles and have been used for

crop production for decades. Plant–microbe interactions in the rhizosphere are the

determinants of plant health and soil fertility. Interaction of plant growth-promoting

rhizobacteria (PGPR) with host plants is an intricate and interdependent relation-

ship involving not only the two partners but other biotic and abiotic factors of the

rhizosphere region (Jha et al. 2012). Plant growth-promoting rhizobacteria (PGPR)

are free-living soil bacteria that can either directly or indirectly facilitate rooting

and growth of plants. PGPR can affect the plant growth directly by (1) production or

changing the concentration of phytohormones such as IAA, gibberellic acid,

cytokinins, and ethylene; (2) solubilization of mineral phosphates and other

nutrients; and (3) asymbiotic N2 fixation and indirectly by enhancing plant growth

via suppression of phytopathogens by a variety of mechanisms. These include the

ability to produce siderophores that chelate iron, making it unavailable to

pathogens; the ability to synthesize antifungal metabolites such as antibiotics,

fungal cell wall-lysing enzymes, or production of volatiles such as hydrogen

cyanide, which suppress the growth of fungal pathogens; the ability to successfully

compete with pathogens for nutrients or specific niches on the root; and the ability

to induced systemic resistance (ISR) (Saraf et al. 2010).

Based on their above-mentioned attributes, Somers et al. (2004) classified PGPR

as biofertilizers (increasing the availability of nutrients to plant), phytostimulators

(plant growth promoting, usually by the production of phytohormones),

rhizoremediators (degrading organic pollutants), and biopesticides (controlling

diseases, mainly by the production of antibiotics, antifungal metabolites, lytic

enzymes producers, etc.). Biofertilizers are preparations containing live

microorganisms that help in nutrient availability through fixation, solubilization,

or mobilization. There are many biofertilizers for application in agricultural crop

production. Their importance can be realized from the fact that more than 43

million ha under paddy, 35 million ha under coarse cereals, 23 million ha under

pulses, 25 million ha under groundnut, and 4 million ha under soybean can be

benefited by using one or other types of biofertilizers. Biofertilizers benefit the crop

by way of increased N fixation, enhanced availability of nutrients through solubili-

zation, or increased absorption and stimulation of plant growth through

phytohormones production like IAA, GA, etc. (Desai et al. 2012).
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15.3.1 Rhizobium and Bradyrhizobium

Bradyrhizobium and Rhizobium spp. showed two modes of root colonization in

leguminous plants: one by root hair entry and infection thread formation and

another by crack entry and intercellular spreading (Boogerd and van Rossum

1997). Root hair entry has received the majority of study and takes place in most

temperate and some subtropical legumes (Medicago, Trifolium, Pisum, Phaseolus,
Lotus, Glycine spp., etc.). The crack entry/intercellular spreading infection mode

was reported to occur in a few subtropical and tropical legumes, including Arachis,
Sesbania, Stylosanthes,Neptunia, and Aeschynomene. Root colonization of ground-
nut by rhizobia is characterized by crack entry and intercellular spreading, and no

infection threads are formed. Bradyrhizobium spp. penetrates into the roots by

breaching the epidermal barrier where lateral roots come off instead of entering

through curled root hairs. After entry, Bradyrhizobium cells occupy the space

between epidermal and cortical cells and further spread through the root cortex in

an intercellular matrix. This matrix consists of broken plant cell wall fragments and

bacterial exopolysaccharides. It was proposed that during this process, groundnuts

secrete a variety of compounds that are engaged in the plant-defensive response to

the invading organism (Azpilicueta et al. 2004).

The use of Rhizobium spp. inoculants for groundnut is a common practice for

groundnut production. Also, co-inoculation of Rhizobium with other plant growth-

promoting bacteria received considerable attention in legume growth promotion.

Co-inoculation of Thiobacillus sp. strain LCH (applied at 60 kg ha�1) with Rhizo-
bium sp. strain TNAU14 under field condition of groundnut recorded significantly

higher nodule number, nodule dry weight, and plant biomass 136.9 per plant,

740.0 mg per plant, and 15.0 g per plant, respectively, on 80 DAS and enhanced

the pod yield by 18 %. Also inoculation of S-oxidizing bacteria increased the soil

available S from 7.4 to 8.43 kg ha�1. These results suggest that inoculation of

S-oxidizing bacteria along with rhizobia results in synergistic interactions promot-

ing the yield and oil content of groundnut, in S-deficit soils (Anandham et al. 2007).

Associative effects of VAM with rhizobia have been well documented by Tilak

(1993). Devi and Reddy (2001) observed the influence of VAM fungus and

Rhizobium inoculation on groundnut growth response in relation to growth, nodu-

lation, phosphorus content, and phosphatase activity in pot culture studies. The

amount of phosphorus and activity of acid and alkaline phosphatases increased

significantly with dual inoculation than with individual inoculations.

15.3.2 Mycorrhiza

Role of mycorrhiza to influence plant growth, water, and nutrient content has been

widely reported over the years. The mycorrhiza has a high-affinity P uptake

mechanism that enhances P nutrition in plants. The contribution of indigenous
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arbuscular mycorrhiza (AM) on phosphorus (P) uptake by groundnut was examined

by Rakshit and Bhadoria (2008) in a low P field soil. Results showed that phospho-

rus supply affected percentage of root infected by AM which was 40 % of the roots

at P-0 and decreased to around 30 % and 10 % at P-50 and P-400. Doley and Jite

(2012) reported that the effect of mycorrhizal fungus Glomus fasciculatum on

vegetative growth parameters of groundnut such as leaf number, shoot length,

root length, fresh weight, dry weight, pod number, and nodule number was signifi-

cantly increased as compared to control under pot experiments. Peanuts and

mycorrhizal association, increasing dry matter yield, phosphorus (P) uptake, and

stimulation of root and shoot growth as a result (Rao et al. 1990; Bergero et al.

2003). Al-Khaliel (2010) studied two mycorrhizal species (G. mosseae and

G. fasciculatum) on peanut production. Results revealed that G. mosseae was the

more effective fungus in enhancing peanut growth when compared with

G. fasciculatum.

15.3.3 Pseudomonads, Bacillus, and Others

Members of the genus Pseudomonads showed remarkable metabolic and physio-

logic versatility, implementing colonization of diverse terrestrial and aquatic

habitats and are of great interest because of their importance in plant and human

disease and their growing potential in biotechnological applications. Many

Pseudomonads interact with plants and several species contribute to plant health

by antagonizing plant pathogens by biocontrol mechanisms and directly plant

growth promotion as rhizosphere colonizers (Silby et al. 2011). Earlier attempts

for selection of PGPR for groundnut growth promotion in soils identified an

increase in pod yield following seed treatment with Pseudomonas sp. (Pal et al.

2000). Strains of the genus Bacillus are another most commonly reported PGPR

(Compant et al. 2005; Vessey 2003). B. licheniformis strain MML2501 has efficient

spermosphere colonization with maximum IAA producing attribute that isolated

from groundnut rhizosphere showed the significant seed germination and other

growth parameters such as number of gynophores (91), number of pods (56), pod

weight (41.5), and kernel weight (28.0), and it also increased the root nodules (234)

and nodule weight (1.25 g) under in vitro conditions (Prashanth and Mathivanan

2010). Phylloplane isolates of P. aeruginosa GPS 55 and GPS 21 showed similar

increase in the growth and yield of groundnut when applied as seed treatment

(Kishore et al. 2005a). B. subtilis strains showed the increased emergence vigor and

yield in Florunner groundnuts as reported by Jaks et al. (1985). Efficient germina-

tion, emergence, and increased nodulation by groundnut Rhizobium and B. subtilis
were reported by Turner and Backman (1991). Our experiments performed with

groundnut seedlings with PGPR strains revealed that enhanced root length, fresh

root mass, fresh shoot mass, dry root mass, dry shoot mass, number of leaf,

chlorophyll content, and biomass over control after 60 DAS (Unpublished results)

(Fig. 15.3).
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Siderophore-producing PGPR play a vital role in Fe nutrition of plants and

therefore in plant growth promotion leading to healthy plants which are vital for

increasing crop/food yield (Bloemberg and Lugtenberg 2001). Sayyed et al. (2010)

found the optimization of siderophoregenesis of A. faecalis BCCM 2374 enhanced

seed germination (8.75 %), root length (9.35 %), shoot length (16 %) and chloro-

phyll (8 %) in Arachis hypogaea under pot culture experiments. Taurian et al.

(2010) reported the endophytic isolate such as Pantoea from root nodules has

significant increased plant biomass of groundnut as compared to the effects of

rhizobacterial isolates. Methylotrophic bacteria with growth-promoting and nitro-

gen-fixing ability have been isolated from the rhizosphere and phyllosphere of

groundnut (Madhaiyan et al. 2006, 2010). The Methylobacterium sp. PPFM-Ah

was originally isolated from groundnut leaves and applied through seed imbibitions

to stimulate germination and plant growth under greenhouse conditions

(Madhaiyan et al. 2006). Rhizobium meliloti RMP3 and RMP5 showed siderophore

production on CAS agar medium and 72 % and 75 % inhibition ofM. phaseolina in
in vitro conditions, whereas the two strains’ disease incidence reduces to a mere

7.9 % and 3.5 % at treated groundnut plant (Arora et al. 2001).

15.3.4 Plant Growth-Promoting Fungi

Similar to PGPR, some rhizosphere fungi able to promote plant growth upon root

colonization are functionally designated as “plant growth-promoting fungi

(PGPF).” PGPF may make use of one of the several mechanisms to promote

plant growth like production of phytohormones, solubilization of minerals, and

Fig. 15.3 Effect of PGPR strains on groundnut growth as compared to control
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antagonism to phytopathogens (Pandya and Saraf 2010). PGPF have been reported

to produce substances such as plant hormones to allow plants to utilize

decomposing organic matter through mineral solubilization and to suppress plant

pathogens in the rhizosphere by antagonistic mechanisms, such as the production of

hydrolytic enzymes, aggressive mycoparasitism, competition for saprophytic colo-

nization, and the induction of plant systemic resistance (Masunaka et al. 2011).

Phosphorus (P) is a vital plant nutrient, available to plant roots only in soluble forms

that are in short supply in the soil. A wide range of soil fungi are reported to

solubilize insoluble phosphorous. Strains of Aspergillus niger and Penicillium are

the most common fungi capable of phosphate solubilization. A. niger and Penicil-
lium notatum were studied for their efficacy to solubilize tricalcium phosphate

(TCP) in vitro as well as their effect in vivo to promote the growth of groundnut

(Arachis hypogaea) plants grown in soil amended with TCP. The results showed

that pot experiment showed that the dual inoculation of phosphate-solubilizing

fungi (A. niger and P. notatum) significantly increased dry matter and yield of

groundnut plants as compared to the control soil. These treatments also showed

significant increased in percentage of protein and oil content and as well as

increased percentage of N and P content of the plant (Malviya et al. 2011).

15.4 Disease Management for Sustainable Productivity of

Groundnut

The success and management of diseases by Integrated Diseases Management

(IDM) strategies includes a combination of chemical, cultural, and biological

practices.

15.4.1 Integrated Disease Management

Although chemical pesticides have played an important role in increasing ground-

nut production, their indiscriminate use has led to several environmental problems,

such as the development of pesticide resistance in pest populations, pesticide

residues, and the destruction of beneficial organisms (parasites and predators)

with soil nutrient fertility loss. IDM is currently defined as: “A sustainable approach

to managing diseases by combining biological, cultural, physical and chemical

tools in a way that minimizes economic, health and environmental risks.” This

concept evolved from the original IPM definition after responding to today’s call

for ecologically based pest management. Biological tools in this definition include

host plant resistance as well as microbial agents for disease control (El Khuoury and

Makkouk 2010). Opportunities for more sustainable use are offered by an

integrated approach based on Integrated Disease Management (IDM). Given the

364 U. Pandya and M. Saraf



costs of production and pest losses, it could be most economic and feasible to

develop an IDM program for groundnut (Ghewande and Nandangopal 1997).

There are three main components of IDM: Firstly, the diseases and pest are

managed effectively so that the presence of pathogens/pests remains below the

economic thresholds for the crop and the market. Secondly, a variety of pests

(ranging from microorganisms to insects and large weeds) are managed and thirdly,

the produce must meet the prescribed quality standards with respect to the extent of

damage caused by the pathogen/pest and pesticide residues (lowest possible or nil

pesticide residues). IDM offers immense long-term advantages through the use of

fewer pesticides and better maintenance of environment leading to sustainability.

Therefore, any ideal IDM programs must include one or more of the following

management methods (Charaya and Mehrotra 2004):

1. Proper identification of the pathogen

2. Using the knowledge of the environment (manipulating the environment to

reduce disease incidence)

3. Use of natural enemies of pests (biological control agents) and selective

biopesticides

4. Selective minimum properly planned spray of broad spectrum biopesticides

5. Choosing cultivars resistant to or tolerant to pests/pathogens

6. Appropriate cultural techniques (like time of planting, crop rotation, sanitation,

and adequate plant nutrition)

The changing production system scenario demands for cost-effective, easily

adaptable, and ecofriendly tools for the efficient management of the major diseases.

Disease management requires judicious adoption of the several management tools.

The important among them are discussed below.

15.4.2 Host Plant Resistance

Host plant resistance is an important tool to control diseases of major food crops in

developing countries, especially wheat, rice, potato, cassava, chickpea, peanuts,

and cowpea. The use of resistant varieties is very much welcomed by resource poor

farmers because it does not require additional cost and environment-friendly. A

large collection of the world germplasm has been screened against leaf spots and

rust under laboratory and field conditions at ICRISAT, and the lines showing

resistance have been identified (Mehan et al. 1996; Subrahmanyam et al. 1980).

Reddy and Wightman (1988) reported peanut varieties resistant to peanut virus

disease in Africa. Peanut cultivars (ICGV 89104 and ICGV 91114) yield 55–60 %

more than local cultivar and also lower disease severity of late leaf spot and rust in

India (Pande et al. 2001). ICGV 50 line, ICGV 86031, and ICGV 86699 cultivars

were developed at International Crops Research Institute for the Semi-Arid Tropics

(ICRISAT) highly resistant to leaf miners (Ghewande and Nandangopal 1997).
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15.4.3 Cultural Practices

Cultural control methods not only serve in promoting the healthy growth of the crop

but are also effective in directly reducing inoculum potential (pruning, roguing,

crop rotation, ploughing, etc.) and in enhancing the biological activities of

antagonists in the soil (solarization, crop rotation, mulching, etc.). Intercropping

with pigeon pea, black gram, pearl millet, sorghum, and other crops reduced the

intensity of foliar diseases. Deep ploughing of fields and rotation with gram and

wheat reduced collar rot disease in groundnut (Sathiyanarayanmurthy et al. 1988).

Application of neem cake and farmyard manure to soil gave good control of collar

rot (Karthikeya 1996). Foliar disease management was established by Ghewande

et al. (2002) by deep burying of crop residues, destruction of crop debris by burning,

removal of affected groundnut plants, early planting, and wider row spacing and

intercropping of pearl millet, sorghum, and pigeon pea.

15.4.4 Chemical Control

For many decades fungicides played an important role in disease control. The use of

synthetic insecticides is inevitable in the management of devastating insect pests in

agriculture. The use of synthetic insecticides is associated with population resur-

gence, outbreaks of secondary pests, and the development of insecticide resistance

in insect populations. Although insecticides are expensive and hazardous to apply,

farmers are inclined to use them because the obvious quick knock-down effect of

synthetic insecticides is convincing to them (Ghewande and Nandangopal 1997).

Several systemic and nonsystemic fungicides were tried for reducing the severity of

major foliar diseases, viz., early leaf spot, late leaf spot, and rust of groundnut.

Akgul et al. (2011) investigated the effects and the possibility of using some

systemic fungicides (Fludioxonil, Azoxystrobin, Metalaxyl-M, Tolclofos-Methyl,

Thiram, Carboxin) as seed treatments with different active ingredients against stem

rot caused by Sclerotium rolfsii in peanuts. Results showed that fungicides such as

Fludioxonil 100 g L�1, Azoxystrobin + Fludioxonil + Metalaxyl-M, Carboxin +

Thiram, and Tolclofos-Methyl + Thiram were the most effective fungicides in

decreasing stem rot on peanuts under pot experiments. Field experiments were

carried out to evaluate the effects of variety and fungicidal rate on Cercospora leaf

spot disease of groundnut by Muhammad and Bdliya (2011). Results showed that

2 kg ha�1 of fungicide mancozeb and either RRB or ICGV-86024 appeared to be

more promising against this disease. Naab et al. (2005) also reported that applica-

tion of foliar sprays of fungicide in Ghana was effective in controlling Cercospora
leaf spot and improved groundnut biomass and pod yield by 39 % and 75 %,

respectively, when averaged across cultivars and years. Tebuconazole and

azoxystrobin are highly active against both foliar and soil-borne diseases; however,

they both have site-specific modes of action and, therefore, a greater risk for
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resistance development (Bertrand and Padgett 1997). Culbreath et al. (2001) also

evaluated the efficacy of various alternations and combinations of chlorothalonil

and benomyl for managing benomyl-resistant C. arachidicola and C. personatum
populations. Results of that study showed that full-season tank mixes of the

compounds provided leaf spot control comparable to the standard chlorothalonil

program, suggesting that tank mixing is a valid resistance management tool where

fungicide resistance is already a problem.

15.4.5 Biological Control

Biological control of plant diseases is an important area, which needs attention

since most of the hazardous inputs added into the agricultural system are in the form

of plant protection chemicals. Detailed studies aimed at replacing chemical

pesticides with environmentally safer methods are currently being a greater impor-

tance at this juncture. The biological control of soil-borne pathogens with antago-

nistic bacteria belonging to plant growth-promoting rhizobacteria has received

prominent attention because of the dual role of these bacteria in plant growth

promotion and disease control (Basha et al. 2012). Biological control of plant

diseases has been considered as a viable alternative method to manage plant

diseases. Biological control is the inhibition of growth, infection, or reproduction

of one organism using another organism. Biocontrol is environmentally safe and in

some cases is the only option available to protect plants against pathogens. Fungal

plant diseases are considered the most important microbial agents that cause serious

loss of agricultural crops annually (Heydari and Pessarakli 2010).

Extracellular chitinolytic enzymes of microorganisms have a potential to suppress

the activities of the pathogens by degrading the chitin in their cell walls and thus

protect the plant from disease (Unpublished data). Chitinolysis plays an important

role in biological control of plant diseases and has been substantiated with increased

disease control by chitin-supplemented application of chitinolytic biocontrol agents

(Zhang and Yuen 2000; Manjula and Podile 2001), greater field efficiency of

chitinase preparations in disease control (Shternshis et al. 2002), and enhanced

biocontrol potential of genetically engineered organisms for chitinase overproduc-

tion (Limon et al. 1999). Bacillus subtilisAF 1, a potent chitinolytic bacterial isolate,

had a broad spectrum antifungal activity. The bacterium was an effective biocontrol

agent of watery rot of papaya fruits (Kumar et al. 1988), crown rot of groundnut, and

Fusarium wilt of pigeon pea (Manjula and Podile 2001). Severity of groundnut early

leaf spot caused by Cercospora arachidicola was reduced by foliar application of a

chitinolytic B. cereus (Kokalis-Burelle et al. 1992). Manjula et al. (2004) studied

partially purified β-1, 4-N-acetylglucosaminidase (NAGase) of a biocontrol strain

Bacillus subtilisAF 1 for control of rust in groundnut (caused byPuccinia arachidis).
In the presence of NAGase, germination of urediniospores of P. arachidis was

reduced by 96 % compared with the control. In a detached leaf bioassay, NAGase

reduced the rust lesion frequency by >60 %. Foliar application of chitinolytic

15 Integrated Diseases Management in Groundnut for Sustainable Productivity 367



Serratia marcescens resulted in decrease in the incidence of late leaf spot disease

in groundnut (Kishore et al. 2005b). Senthilraja et al. (2010) reported field study of

talk-based formulation of Beauveria and Pseudomonas strain mixture (with and

without chitin) significantly suppressed the leaf miner and collar rot incidence of

groundnut. The maximum control of leaf miner (94.84 % and 93.96 %) and collar rot

(95.47; 94.52 %) was observed in plots that received the mixture with and without

chitin amendment, respectively.

Some Pseudomonas species and strains have been reported for their ability to

control stem rot disease of groundnut caused by S. rolfsii (Ganesan and

Gnanamanickam 1987; Tonelli et al. 2011). Pseudomonads are well known for

the production of a diverse array of antifungal compounds, including 2,4-

diacetylphloroglucinol, pyrrolnitrin, pyoluteorin, rhizoxins, phenazines (PHZ),

and lipopeptides (LPs) (Raaijmakers et al. 2002, 2009, 2010; Haas and Defago

2005; Gross and Loper 2009; D’aes et al. 2010). Le et al. (2011) studied the

phenazine and lipopeptide producing Pseudomonas spp. inhibited hyphal growth

of S. rolfsii and significantly reduced stem rot disease of groundnut in greenhouse

and field experiments. Pseudomonas aeruginosa GRC1 showed 97 % reduction in

stem rot of peanut in S. sclerotiorum-infested soil (Gupta et al. 2006). Kishore et al.
(2006) also found that biocontrol agent Pseudomonas aeruginosa GSE 18 reduced

the preemergence of groundnut rotting by 60 % in A. niger-infested potting mixture.

Bhatia et al. (2008) reported increased seed germination, growth promotion, and

suppression of charcoal rot due to M. phaseolina with fluorescent pseudomonads,

P. fluorescens for groundnut vegetative growth and in biocontrol of late leaf spot

caused by C. personatum in groundnut (Meena et al. 2006). Our experiments

performed with biocontrol agents and PGPR strains under in vitro conditions

revealed that SEM images of MBCU2 (Bacillus spp.) showed aberrant features

such as hyphal perforation, lysis, fragmentation, and degradation of mycelia of

M. phaseolina after five days of incubation (Fig. 15.4a, b), whereas Fig. 15.5 showed
inhibition of various fungal pathogens by PGPR strains (unpublished results).

Trichoderma spp. is effective in control of soil/seed-borne fungal diseases in

several crop plants. Species of this genus are well reported as biocontrol agents

against several fungal pathogens through mechanisms such as mycoparasitism

(mycelial coiling), antibiosis, cell wall-degrading enzymes, and induced resistance

in host plant against diseases by altering plant gene expression (Pandya and Saraf

2010; Alfano et al. 2007). Gajera and Vakharia (2012) observed that biocontrol

agent T. viride 60 has a significant role in the control of collar rot disease by

reducing the virulence of A. niger (86.2 %) in the peanut with lytic enzymes like

chitinase, β-1,3-glucanase, and protease production as compared to control.

Trichoderma harzianum (Th3) was used against groundnut varieties (GG-10,

GG-20, M-13, and local varieties) to reduce the yield loss by root rot disease during

the year 2009 and 2010 in farmers’ fields in twelve villages in the Jaipur district of

Rajasthan. Maximum values of yield (39.17 Q ha�1), R.C. Index (0.15), C.F.U.

(38.5 � 106), and lowest root rot incidence (14.03%) were recorded in the Th3-

treated groundnut crops (Sharma et al. 2012). T. harzianum reduced the seedling
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mortality of groundnut due to collar rot, and soil drenching was more effective than

seed treatment (Kulkarni et al. 1995). Groundnut seed rot and collar rot were

reduced when Trichoderma isolates were incorporated into the soil under

Fig. 15.5 In vitro growth inhibition of fungal phytopathogens like A. nidulance (a), A. versicolor (c),
F. oxysporum (b), M. phaseolina (d) by PGPR strains

Fig. 15.4 SEM photographs showing deformalities in fungal mycelia during interaction between

Macrophomina phaseolina and MBCU2 (Bacillus spp.). (a) Hyphal shriveling and (b) hyphal lysis
and fragmentation
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greenhouse experiments (Prabha and Urs 1998). The Trichoderma spores remained

viable up to nine weeks of storage at room temperature when groundnut seed coated

and reduced the stem rot incidence (Biswas et al. 2000).

Rhizobacteria-induced systemic resistance (ISR) is a type of systemically

enhanced resistance against a broad spectrum of pathogens that is triggered upon

root colonization by selected strains of non-pathogenic bacteria. Pathogenesis-

related proteins are generally used as ISR markers (Heil and Bostock 2002), but

increased activities and accumulation of these proteins depend mainly on the

inducing agent as well as plant genotype, physiological condition, and pathogen

(Madhaiyan et al. 2006). PGPR strains like S. marcescens GPS5 and P. aeruginosa
GSE18 reduced late leaf spot disease of peanut by defense-related enzymes like

chitinase, β-1,3-glucanase, PO (peroxidase ), and PAL (phenylalanine ammonia-

lyase) (Kishore et al. 2006). Madhaiyan et al. (2006) observed ISR activity in

peanut against rot pathogens inoculated in leaves by methylotrophic bacteria that

showed significant higher activities of PAL, β-1,3-glucanase, and PO when treated

with A. niger or S. rolfsii. Zhang et al. (2001) examined the induction in peanut of

systemic resistance to late leaf spot disease (caused by Cercosporidium
personatum) by PGPR like Bacillus and Paenibacillus that elicited ISR in other

plants and by the addition of chemical elicitors. Bacillus sp. CHEP5 and Pseudo-
monas sp. BREN6 induce ISR against root and stem wilt caused by S. rolfsii disease
by activation of β-1,3-glucanase, PAL, and PO (Tonelli et al. 2011).

Recently, Anil and Podile (2012) reported the chlorothalonil-resistant

chitinolytic B. thuringiensis which genetically engineered to secrete the harpinPss

(heat stable, glycine, and leucine-rich with no cysteine protein with its resistance

to denaturation by heat), and this was studied to promote the growth of

groundnut. Results showed that seed treated with Bt-pss (chlorothalonil-tolerant

B. thuringiensis SFC24 from soil and genetically engineered Bt-pss for extracellu-

lar secretion of harpinPss) suggested the additive effect of harpinPss on the growth

and vigor possibly due to better health of groundnut plants. Moreover, modification

of chlorothalonil-tolerant strains for dual benefit of growth promotion and disease

control is relatively a new strategy that could make biocontrol as the major

component of IDM.

15.5 Conclusion

Diseases pose a major threat to the production of peanuts each year, and prevention

of disease in peanut is a major concern for producers. It is evident from the

literature that there is great potential for integration of disease control measures

on groundnut. A cost-effective and highly efficient IDM program should include

components such as use of biocontrol agents must be considered for these

components to be highly successful. Biological control is an emerging technology

to control insect pests, diseases, and weeds. Genetic engineering will play a vital

role in production of transgenic biocontrol agents having biocontrol potential and
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ecological acceptability. Impact of the environmental conditions on the expression

of biocontrol potentialities needs to be addressed. Much emphasis needs to be given

to the interdisciplinary approach in groundnut IDM programs involving field

scouting for insect pests, plant diseases, nematodes, and weeds. IDM needs to be

strengthened on a large scale for economically important pests of groundnut.
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Chapter 16

The Effects of Volatile Metabolites from

Rhizobacteria on Arabidopsis thaliana

Katrin Wenke and Birgit Piechulla

16.1 Introduction

In the eukaryotic world the release and detection of volatile substances, often

referred to as odorous compounds, is a well-known and effective way to send

messages and to gain information. Just think of the wonderful, classic fragrances

released by blossoms to attract bees from a distance. People are also strongly

attracted—or repulsed—by many odors or scents of blossoms. The food and

perfume industries take advantage of the human (olfactory) sense of smell, for

example, the aroma of cheese or wine or the scent of a favorite deodorant. The great

advantage of such substances, called volatiles by scientists, is the very long distance

over which especially the sessile plants can attract or repulse their interaction

partners. Volatiles are characterized by their lipophilicity, a low molecular weight

of less than 300 Da, a high vapor pressure above 0.01 kPa (at 20 �C), and low

boiling points. These properties cause the compounds to evaporate or vaporize.

Most of the volatiles described up to now are aromatic compounds, derivatives of

fatty acids, and terpenoids.

Microorganisms, in particular about 350 bacterial species studied to date, are

important producers of volatile substances. Many commonly used and well-known

aromas and odors such as those of cheese and wine (e.g., Urbach 1997; Schreier

1980) have their origin in the prokaryotic world, also the earthy smell in a forest

after a rain shower caused by the geosmin released by actinomycetes (Gerber and

Lechevalier 1965). The qualitative and quantitative distribution of individual

compounds sometimes extremely complex mixtures of volatiles is mainly deter-

mined by the metabolic capabilities and capacities of the bacterial species involved

and the availability of nutrients in line with respective growth conditions (Stotzky
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and Schenck 1976; Fiddaman and Rossall 1994). Anywhere from a dozen to nearly

100 compounds are emitted, among others, by Chondromyces crocatus,
Carnobacterium divergens 9P, Streptomyces sp. GWS-BW-H5, and Serratia
odorifera 4Rx13 (Schulz et al. 2004; Ercolini et al. 2009; Dickschat et al. 2005;

Kai et al. 2010). At present, nearly 770 bacterial volatiles have been identified as

belonging to 48 different classes of compounds (Wenke et al. 2012b).

The quantitatively dominant compounds are alkenes, ketones, and terpenoids

with 120–190 compounds each, followed by acids, benzenoids, esters, and

pyrazines (60–80 compounds), and 30–40 are representatives of the aldehydes,

ether compounds, and lactones. Bacterial species investigated so far, which emits

volatile mixtures, is far below the number of microorganisms present on earth. As a

result, the analysis and identification of bacterial volatiles continues to be an

interesting and multifaceted field of research. A number of techniques have been

developed to collect and detect volatile substances (e.g., the open VOC (volatile

organic compound) collection system, Kai et al. 2007; the closed-loop-stripping

device, Boland et al. 1984; solid-phase microextraction (SPME), Arthur and

Pawliszyn 1990; gas chromatography/mass spectrometry (GC/MS); proton transfer

reaction/MS (PTR/MS), Mayr et al. 2003, etc.). Each technique has its merits but

only reveals part of the volatile spectrum in the form of actual quality and quantity

(summarized in Wenke et al. 2012b).

16.2 Volatiles as Infochemicals in Soil

It is interesting and important not only to identify novel volatiles from bacteria, but

in fact there is always the question of the potential ecological and/or physiological

function of the emitted compounds. For their producers, the release of volatile

metabolites means a “loss” of essential carbon, in part as extremely energy-rich

compounds. The buzzword “talking tree” (Baldwin et al. 2006) makes clear in an

exemplary way the ecophysiological potential of volatile emission. Up to now, the

focus of research in this area was and is what happens above the soil surface. This

has made it possible to accumulate an extensive knowledge of the effects of

airborne signals in the atmosphere (e.g., van Dam et al. 2010; Müller and Hilker

2000; Piechulla and Pott 2003; Zangerl and Berenbaum 2009). For the most part,

findings that volatile substances are also produced, released, and detected below the

soil surface have been neglected (summarized in Wenke et al. 2010). The zone

surrounding the roots, i.e., the rhizosphere (Barber and Martin 1976), is an attrac-

tive environment for numerous types of organisms such as microbes, arthropods,

nematodes, amebas, and ciliates. This is due to the energy-rich root exudates

(Wenke et al. 2010).

The major producers of volatile metabolites are roots of plants. Typical plant

volatiles in the soil are 1,8-cineol, γ-terpinene, β-myrcene, α-pinene,
β-phellandrene, and β-caryophyllene, of which some are of major ecological sig-

nificance (summarized in Kai et al. 2009b; Wenke et al. 2010). Rasman and
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colleagues (2005) described the emission of β-caryophyllene by the roots of maize

(Zea mays) induced by feeding damage, which consequently attracted the nematode

Heterorhabditis megidis to directly ward off theWestern corn rootwormDiabrotica
virgifera virgifera. This example shows that release of volatile chemicals is depen-

dent on the physiological state of the plants, as was demonstrated using carrots

(Daucus carota spp. sativa) that were undamaged or damaged mechanically or by

feeding (Weissteiner and Schütz 2006). In addition to plants, soil fungi and

rhizobacteria emit all sorts of volatiles such as fungal alcohols octanol, ethanol,

β-phenylethanol, 1-octen-3-ol, and octenal, as well as the bacterial metabolites

trimethylamine, cyclohexanol, dimethyl disulfide, 2,3-butanediol, geosmin, ethyl-

ene, and 2,5-dimethyl pyrazine, but also simple, inorganic compounds such as

carbon dioxide, ammonia, and hydrogen cyanide (summarized in Kai et al.

2009b, 2010; Blom et al. 2011; Bernier et al. 2011). Fungal volatiles play a

significant role not only in intraspecies communication, such as attracting mating

partners, but also in attraction or repulsion of other fungal or plant species. In the

latter case, this led to the use of the term “burned area” referring to the zone

surrounding the host plants of truffles, where growth of herbaceous plants is most

likely suppressed by the fungal volatiles (Pacioni 1991). With regard to the signifi-

cance of rhizobacterial volatiles, it is assumed that they play a role in inter- and

intraspecies communication or as signals between cells, which serve the disposal of

excess carbon compounds, and may even affect the growth of other organisms

(plants, bacteria, fungi, nematodes, amebas, ciliates). These effects may be positive

as well as negative (Kai et al. 2009a). Around 40 years ago, Stall and colleagues

(1972) demonstrated that the ammonia produced by Xanthomonas vesicatoria is

involved in necrosis of infected pepper. On the other hand, hydrogen cyanide

enables pseudomonads to impair root growth of Lactuca sativa seedlings (Alström

and Burns 1989). The most recent data have demonstrated an ammonia-induced

change in antibiotic resistance in gram-negative and gram-positive bacteria

(Bernier et al. 2011).

16.3 Dual Culture Tests to Study the Effects of Volatile

Compounds

The so-called dual culture system established in recent years to study the effects of

bacterial volatiles on other organisms was used in this study because of its simplic-

ity (Wenke et al. 2012a). In a two-chamber Petri dish, the rhizobacteria are

separated from their respective interaction partner by a plastic barrier, which only

permits exchange of volatile metabolites. Nonspecific binding of gaseous

substances is ensured by adding active charcoal, in order to observe significant

effects on reduction of growth (Vespermann et al. 2007). The advantages of this

system, i.e., dual cultures in partitioned Petri dishes, is the use of synthetic growth

media, and reduction to only two interaction partners, serve to minimize any
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variables. This ensures a good reproducibility and evaluation of test results, both

indispensable for transcriptome analysis. The test system used represents one

segment of the spectrum of natural conditions. In-depth studies of volatile-induced

inhibition of plants are still in its infancy; hence, a simple system is required to

understand the basic relationships.

Initially the test system of Ryu and colleagues (2003) was employed, who

described the strong growth-promoting impact of rhizobacterial volatile

metabolites on plants. The studies revealed an enlargement of the leaf surface in

Arabidopsis thaliana in response to volatiles from the species Bacillus, Serratia,
Pseudomonas, and Escherichia. The single active substance was identified as 2,3-

butanediol. Further research has also demonstrated a variety of positive effects of

2,3-butanediol or of other complex mixtures of bacterial volatiles on plants (1)

initiation or increase of plant resistance to biotic (Erwinia carotovora, Pseudomo-
nas syringae) and abiotic stress (salinity, desiccation, or osmotic stress); (2) physi-

ological, metabolic, and morphological changes (cell-wall expansion, more

chloroplasts, increased photosynthetic capacity, accumulation of starch and iron,

changes in volatile emission, increased production of essential oils, alteration in

primary metabolism); and (3) involvement of plant hormones (auxin, abscisic acid,

ethylene) (Ryu et al. 2004; Zhang et al. 2007, 2008a, b, 2009, 2010; Cho et al. 2008;

Xie et al. 2009; Banchio et al. 2009; Rudrappa et al. 2010; Kwon et al. 2010; Ezquer

et al. 2010).

When evaluating the plant growth-promoting effects mentioned, it should be

taken into account that most of the data was collected in a closed system. Kai and

Piechulla (2009) were able to identify a clear correlation between growth promo-

tion and CO2 enrichment during cocultivation of plants and bacteria in a closed

system. In open dual cultures, there was a possibility of indirect promotion of plant

fitness by volatiles emitted due to inhibition of plant pathogenic fungi such as

Rhizoctonia solani (Kai et al. 2007). Serratia plymuthica HRO-C48 and Stenotro-
phomonas maltophilia R3089 turned out to be two of the most effective organisms

in the dual culturing system. At the same time, volatile mixtures from S. plymuthica
HRO-C48 and S. maltophilia R3089 showed significant effect on A. thaliana
seedlings (Vespermann et al. 2007).

Once the dual culturing system was established for in-depth investigations, the

bacteria and plants were each applied in two equidistant straight lines. A given

number of seedlings and a defined bacterial cell count of 107 were chosen at zero

point in time. This corresponds to the bacterial concentration of S. plymuthica
HRO-C48 and Stenotrophomonas maltophilia found on 1 g of fresh roots from

strawberry or rapeseed plants, respectively, under field conditions (Kurze et al.

2001; Berg et al. 1996). At the beginning of the experiment, 107 cells were applied

accordingly, whereas when between 105 and 107 colony-forming units of S.
plymuthica HRO-C48 were applied in preliminary experiments, there were no

clear differences in cotyledon or root length. In general, rhizobacteria reached

values of up to 108 CFU/g fresh weight of strawberry, potato, and rapeseed roots

(Berg et al. 2002). The formation of biofilms on root surfaces with a very high
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localized bacterial density also has been described by number of researchers

(Bloemberg et al. 2000; Walker et al. 2004).

16.4 Inhibitory Effects of Volatiles from S. plymuthica
HRO-C48 and S. maltophilia R3089 on A. thaliana

The observation that S. plymuthicaHRO-C48 and S. maltophilia R3089 inhibited A.
thaliana seedling growth under dual culture conditions has raised many questions.

First and foremost, it is interesting to find out which signaling pathways are

involved and whether they are similar to plant responses to pathogens, whether

these effects at physiological and molecular levels are dependent on the bacterial

species, or whether the toxicity of mixtures of volatiles is nonspecific.

16.4.1 Morphological and Physiological Changes in
A. thaliana Under Dual Culture Conditions

In response to bacterial volatiles, the wild-type seedlings of A. thaliana visibly

showed a marked reduction in early vegetative growth and a distinct paling of the

leaves. Determination of chlorophyll and carotenoid contents showed an earlier

drop in carotenoid content, in comparison to chlorophyll content, in response to

both volatile mixtures. Measurement of cotyledon and root lengths confirmed a

significant inhibition after 2–3 days of exposure to volatiles S. plymuthica HRO-

C48 and S. maltophilia R3089, whereas in both cases the underground portion of

the plant was affected earlier or to a greater degree (Wenke et al. 2012a). This could

be caused by more rapid growth of the roots. However, the possibility of qualitative

and quantitative differences in the distribution of volatile substances between plant

medium and airspace—due to divergent polarities and volatilities of individual

components—should also be taken into account. Another source of speculation

would be the recognition of effective volatiles via the roots, which has yet to be

clarified.

As to growth and leaf pigmentation, the response to S. maltophilia volatiles was

delayed by about one day. There have been reports that volatile emission is

quantitatively dependent on the bacterial growth phase (Bunge et al. 2008; Kai

et al. 2010). Bacterial growth in dual cultures was checked, and in both cases the

bacteria were growing exponentially after 6 and 12 h and had entered the stationary

phase with 1011 cells after 24 h (Wenke et al. 2012a). A comparison of the exact

number of cells in correlation with the kinetics of morphological effects revealed

that the viable cell count of S. maltophilia was lower after 6 and 12 h than that of

S. plymuthica. Experiments with 100–107 S. plymuthica cells revealed that reduc-

tion of leaf and root length depends to a certain extent on the number of bacteria
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used (Wenke et al. 2012b). The more cells applied initially, the earlier were

significant effects detectable, whereas differences were minimal at around 105

bacterial cells or more (unpublished data). Since all of the experiments for this

report began with 107–108 cells of S. plymuthicaHRO-C48 or S. maltophilia R3089
(time zero), it can be assumed that slight differences in viable cell counts of both

rhizobacterial species during the first few days had no significant effect on inhibi-

tion of A. thaliana. It is more likely that species-specific differences in the bacterial

volatile mixtures (Kai et al. 2007) were responsible for kinetic differences in

growth inhibition.

The complete loss of pigmentation by the A. thaliana seedlings within a few

days led to the assumption that the rhizobacterial volatiles were lethal to the plants.

Evans blue, a dye that penetrates dead cells (Kim et al. 2003), was used to recognize

the time and location of cell death events in the cotyledons. A pale, randomly

distributed blue staining of cotyledon cells was observed after 3 days in response to

S. maltophilia R3069 and S. plymuthica HRO-C48 exposure. After 5 days, dye

penetrated the cells to a very high degree (Wenke et al. 2012b). There were no

species-specific differences in the effect caused by the bacterial volatiles, namely,

the complete death of the seedlings in dual cultures after a continuous 5-day

cocultivation of the plants with volatile infochemicals.

In an experiment in which the bacteria were removed from the coculture after

different time periods, there was an enormous reduction in growth inhibition when

the plants were only exposed to the volatile metabolites for up to 36 h (Wenke et al.

2012b). This implies that signaling pathways leading to a drastic inhibition of

growth and to cell death had not been activated within this incubation period.

The type of stress caused by confrontation of plants with bacterial volatiles is

probably similar to the effect of plant-pathogen interaction involving direct contact.

So the previously reported (a)biotic stress associated with hydrogen peroxide

accumulation was investigated by using diaminobenzidine (DAB) staining

(Thordal-Christensen et al. 1997). High concentrations of hydrogen peroxide in

the cotyledons could be detected after 2 or 3 days in dual cultures with S.
plymuthica HRO-C48 and S. maltophilia R3089, respectively. The one-day delay

in the response to S. maltophilia R3089 went along with differences in kinetics of

growth impairment (Wenke et al. 2012a). This kinetic relationship, the lack of

inhibitory effects under coculturing for less than 36 h, and the fact that a high

formation of reactive oxygen species under stress conditions has an extremely

detrimental effect on cells suggest that impairment of growth and cell death are

closely linked to formation of hydrogen peroxide. It should also be taken into

consideration that hydrogen peroxide is considered a nonspecific signaling mole-

cule in stress situations. Its formation has been described as one of the initial

responses of pathogen defense (Lamp and Dixon 1997) and to many abiotic stimuli

as well (Neill et al. 2002; Mittler et al. 2004). Therefore, potentially specific signals

can be expected earlier than 2 or 3 days in dual cultures, and later effects (formation

of hydrogen peroxide, inhibition and killing of seedlings) can be interpreted as a

nonspecific result of volatile exposure. At present it remains speculative to what
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extent this hydrogen peroxide formation reflects a similarity to biotic or abiotic

forms of stress.

16.4.2 Specific Changes in Gene Expression

Current data show that bacterial volatiles cause death of A. thaliana seedlings in

dual culture within 5 days. This is accompanied by a marked impairment of leaf and

root growth and a systemic accumulation of hydrogen peroxide after 2–3 days.

None of these were observed when the seedlings were exposed to volatiles from S.
plymuthica for a maximum of 1.5 days. It is, therefore, concluded that an exposure

time of less than 36 h is especially suitable for analysis of gene expression in order

to detect any specific plant responses not solely linked to the dying process.

First indications of transcriptional changes in dual cultures came from

established lines of A. thaliana in which stress- and pathogen-induced promoter

elements control the uidA (β-glucuronidase, GUS) gene (Rushton et al. 2002). In the
course of these experiments, GUS activity in the cotyledons was detected histo-

chemically using 5-bromo-4-chloro-3-indolyl glucuronide (X-Gluc) and quantified

fluorometrically using 4-methylumbelliferyl-β-D-glucuronide (MUG). Two trans-

genic lines of plants led to the decisive discovery of lines containing (1) an S box

and (2) a Gst1 box. The S box is involved in the regulation of gene expression in

response to fungal elicitors in parsley (Petroselinum crispum) (Kirsch et al. 2001)

and apparently plays a special role in nonhost interaction with pathogens (Rushton

et al. 2002). The S box is apparently regulated by APETELA 2/ethylene-responsive

element-binding ERF (AP2/ERF) transcription factors (Rushton et al. 2002). In

dual cultures with S. plymuthica HRO-C48 as well as with S. maltophilia R3089,

the S box exhibits a volatile-dependent induction within 18 h, as determined

histochemically and spectrophotometrically (Wenke et al. 2012b).

During the same time period, the specific activation of the Gst1 box in response

to both mixtures of volatiles was detected (Wenke et al. 2012a). This element is

already well known as the gst1 gene of the potato (Strittmatter et al. 1996) and

contains both S box and W box. So the Gst1 element is involved in responses to

pathogens and in senescence (aging) processes. It is also regulated, in addition to

the AP2/ERF proteins, by WRKYs. In conclusion, there is a new realization that

WRKY- and AP2/ERF-regulated signaling pathways are activated in less than 18 h,

without kinetic differences in the responses to S. plymuthica HRO-C48 and S.
maltophilia R3089.

In order to gain more detailed knowledge of underlying signaling processes,

early changes in A. thaliana wild-type seedlings at the transcriptome level were

analyzed after 6, 12, and 24 h by microarray analysis. Responses to volatile

mixtures from S. plymuthica HRO-C48 and S. maltophilia R3089 were analyzed

independently by using ATH1 gene chips (Hennig et al. 2003). Many individuals

from five dual cultures each were combined to form a biological replicate; this

resulted in well reproducible data with duplicates, which were verified by real-time
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PCR analysis as biologically independent on the basis of selected marker genes

(Wenke et al. 2012a).

In response to volatiles of S. plymuthica HRO-C48 and S. maltophilia R3089,

either 889 or 655 genes, respectively, underwent an at least twofold transcriptional

change compared to the control (Wenke et al. 2012a). In both experiments, consid-

erably more genes were repressed (turned off) than were expressed (turned on). On

the other hand, the transcriptome changes induced by both bacteria had kinetically

opposing effects. Whereas the volatiles of S. plymuthica HRO-C48 induced regu-

latory responses in most genes after 24 h, much of the response to cocultivation

with S. maltophilia R3089 could be detected within hours. These kinetics are

diametrically opposed to later, perhaps indirect, effects. This supports the assump-

tion that early volatile-induced responses of A. thaliana are specifically adapted to

the various elicitors and also need to be looked at separately from nonspecific

effectors.

A direct comparison (Venn diagram) of the list of genes regulated by both

treatments revealed that 162 genes were changed by S. plymuthica HRO-C48 and

S. maltophilia R3089 volatiles at the expression level throughout the whole experi-
ment (Wenke et al. 2012a). The remaining 727 or 493 genes were regulated

specifically by volatiles of S. plymuthica HRO-C48 or S. maltophilia R3089,

respectively. It can be assumed that the 162 genes independent of the bacterial

species contain, among others, signaling elements responsible for growth inhibition

of the plants at a later time. Transcription factor activity is located on 21 of these

162 genes, including three APETELA-2 proteins, six MYB factors, and WRKY18.

It would be interesting to hypothesize whether members of these three protein

families directly interact with each other in response to rhizobacterial volatiles.

MapMan (Thimm et al. 2004) is a good software tool for summary visualizations

of functions of regulated genes. Both data sets of S. plymuthica HRO-C48 and S.
maltophilia R3089 volatile-specific regulated genes were presented in an “Over-

view of biological stress responses” (Wenke et al. 2012a). A strong involvement of

typical responses to pathogens can easily be recognized in dual cultures with S.
plymuthica HRO-C48. Receptors involved include At5g45070 and At1g65390,

which are essential for pathogen defense and the immune system of plants (e.g.,

Meyers et al. 2002). Also involved are peroxidases, glutathione-S-transferases, and

enzymes of secondary metabolism and hormonal signaling pathways (salicylic

acid, SA; abscisic acid, ABA; auxin; ethylene), as well as pathogenesis-related

(PR) genes, including seven members of the Toll/interleukin1 receptor/nucleotide

binding site/leucine-rich repeat (TIR-NBS-LRR) class of proteins, which are essen-

tial for pathogen recognition (Dangl and Jones 2001). Considerably, fewer patho-

gen-response-associated genes were regulated in response to S. maltophilia R3089

volatiles, although four proteins of the TIR–NBS–LRR class were involved. Other

common features of the specific response to both volatiles were changes in proteo-

lytic processes and cell wall metabolism as possible mechanical defense

mechanisms. In addition, several representatives of the family of pathogen

defense-associated transcription factors seemed to play a bacterial-nonspecific

role in mediating volatile-induced responses: ERF, basic leucine zipper (bZIP),
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MYB, and WRKY. Once again, the transcriptional changes of the cell wall stood

out in the MapMan visualization of the “metabolic overview” (Wenke et al. 2012a).

At the same time, the samples treated with S. maltophilia R3089 revealed an

inactivation of genes coding for components of the mitochondrial electron transport

chain and the photosystems. In part, these may be the cause of the one-day delay of

hydrogen peroxide accumulation in response to S. maltophilia R3089 volatiles in

comparison to the response induced by S. plymuthica HRO-C48.

In order to verify a correlation with certain functional activities, 727 or 493 of

the volatile-specific genes and the 162 jointly regulated genes were assigned to

functional categories according to the gene ontology (GO) annotation of TAIR

(Swarbreck et al. 2008; Berardini et al. 2004) (Wenke et al. 2012a). In the set of S.
plymuthica HRO-C48 specific genes, the categories “DNA, RNA, and protein

metabolism” and “cell organization and biogenesis” were significantly underrepre-

sented, also genes with functional roles in mitochondria and ribosomes, in the

cytoplasm, and at the plasma membrane. On the other hand, there were significantly

more genes of the “transcription” categories and genes involved in general stress

responses and in extracellular processes.

With regard to the GO categories, the specific responses to S. plymuthica HRO-

C48 had little in common with those induced by S. maltophilia R3089. The S.
maltophilia R3089 specific genes had a higher incidence in the categories “cell

organization and biogenesis,” “mitochondria,” and “cytosol.” However, the

categories “transport,” “kinase activity,” “nucleic acid binding,” “transferase activ-

ity,” and “developmental processes” are definitely overrepresented. On the basis of

the functional categories, the differences revealed between the two responses

investigated suggest the involvement of different effectors in the volatile mixtures,

which trigger the specific responses in A. thaliana within 24 h.

When we consider the functional classification of the 162 genes that respond

nonspecifically, it seems that general stress responses as well as transcription

factors (TF) are increasingly regulated. In fact, 21 TF that are quite significantly

overrepresented (p � 1.3 � 10�42) were identified. Some of these proteins have

been described as having functions in developmental processes (e.g., two BTB

domain scaffold proteins, BT2 and BT4: Robert et al. 2009) or in stress responses

(e.g., C2H2-type ZAT10 family protein or WRKY18: Sakamoto et al. 2000; Rossel

et al. 2007; Wang et al. 2008). On the other hand, genes of the “transport” and

“protein metabolism” groups were significantly less regulated on average.

In order to better assess the type of plant response to rhizobacterial volatiles, the

data sets were compared with published microarray data from biotic and abiotic

stress experiments, hormone treatments, and the response to growth-enhancing

GB03 volatiles (Kilian et al. 2007; Goda et al. 2008; Wanke et al. 2009; Zhang

et al. 2007). Surprisingly, this resulted in a relatively uniform picture for the

727 and 493 nonspecific genes and the 162 specific genes (Wenke et al. 2012a).

All three data sets revealed a slight overlap with respect to various biotic stresses.

As already revealed by MapMan, it was confirmed that the responses to S.
plymuthica HRO-C48 and to pathogens and the so-called gene-to-gene resistance

have somewhat more in common. As for the transcriptional regulation of hormonal
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signaling pathways, only abscisic acid and methyl jasmonate are of importance in

the nonspecific as well as specific response.

Of all three sets of data, the closest similarity appeared in the responses to abiotic

stress with the highest hypergeometric probabilities. Especially those genes were

involved that are regulated by cold, osmotic, and salt stress as well as UV-B

radiation. Then again, there proved to be very little in common with the dual

cultures with B. subtilis GB03. This underlines the specificity of changes in plants

as an adaptation to volatiles of various bacterial species. The low degree of

similarity to oxidative stress was also interesting. This supports the notion that

the systematic accumulation of hydrogen peroxide is not a typical response to

reactive oxygen species, which includes the classic programmed cell death and

appropriate signaling pathways upstream, as is known for defense responses upon

pathogen challenge (Neill et al. 2002; Desikan et al. 1998).

The results to date suggest that key factors are present in the 162 generally

regulated genes in response to two different mixtures of volatiles, those for inhibi-

tion of growth and for chlorosis. Due to the large number of transcription factors

(TF) of these 162 genes, many other nonspecifically responding genes might be

regulated by these TF. Analysis of cis-regulatory elements using the Athena

database (O’Connor et al. 2005) revealed that 12 TF-binding motifs are highly

enriched (p � 10�3) in promoters of the 162 genes (Wenke et al. 2012a). Except for

the TATA-box motif, all of the elements of stress responses are involved, especially

those of biotic and abiotic stimuli, abscisic acid signaling, and light stress. The

W-box motif TTGACY is of special interest. It was present in 124 of the 162 genes

and also in the GST1-box, which had previously led to a highly volatile-dependent

GUS activity in the promoter-GUS test. Moreover, W-box-WRKY interaction is

known to play an essential role in important plant processes (Rushton et al. 2010).

16.4.3 Involvement of WRKY Transcription Factors in the
Mediation of Volatile-Induced Changes

The higher frequency of the W box in the 162 nonspecifically regulated genes and

its presence in the volatile-activated GST1 box directed more attention toward

testing of W-box-WRKY interaction. Only AtWRKY18 (At4g31800) was induced

to a considerable degree in both volatile treatments (Wenke et al. 2012a).

AtWRKY18 has been described as a signal in pathogen defense (Pandey et al.

2010). It belongs to the IIa group of WRKY-proteins and is functionally redundant

with its Arabidopsis paralogs AtWRKY40 and AtWRKY60 (Xu et al. 2006; Shen

et al. 2007; Mangelsen et al. 2008). AtWRKY40 (At1g80840) was also induced in

response to S. plymuthica HRO-C48 volatiles (Wenke et al. 2012a). WRKY40,

among other things, is involved in the regulation of RRTF1 (redox responsive

transcription factor) and JAZ8 (jasmonate ZIM-domain), both AP2 proteins

(Pandey et al. 2010). Neither RRTF1 nor JAZ8 were regulated in the dual cultures.
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To test the hypothesis that WRKY transcription factors are involved in volatile-

mediated effects, WRKY18, WRKY40, and WRKY60 single mutants were tested in

tricultures with S. plymuthica HRO-C48 or S. maltophilia R3089 and wild-type

seedlings of A. thaliana. Only the response ofWRKY18 mutants to volatiles of both

bacterial species was significantly weaker compared to the wild type. These

mutants had almost twice the fresh weight and significantly more total chlorophyll

after 3 days in triculture. After 10 days, the relative fresh weight was increased by

300 % (Wenke et al. 2012a). Nevertheless, these WRKY18 mutants were not

capable of surviving. After 10 days they also became extremely chlorotic. DAB

assays revealed no clear differences in hydrogen peroxide accumulation between

the mutant and the wild type. This supports the hypothesis that seedling death is

causally linked to chlorosis but may be indirectly related to accumulation of

reactive oxygen species. Furthermore, it can be seen that the volatile-induced

responses of Arabidopsis include an early WRKY18-dependent signaling pathway

but also a later WRKY18-independent pathway involving hydrogen peroxide. With

respect to fresh weight, chlorophyll content, and hydrogen peroxide content, both

WRKY40 andWRKY60mutants had no significant phenotypic changes compared to

the wild type in tricultures with S. plymuthica HRO-C48 and S. maltophilia R3089.
WRKY18/40 plays an antagonistic role in ABA-dependent signal transduction

(Chen et al. 2010; Shang et al. 2010), and WRKY18 positively regulates the JA

signals (Wang et al. 2008; Pandey et al. 2010). A comparison of the volatile-

regulated data sets with hormonal treatments revealed a large overlap of the ABA

and JA effects. However, none of the known ABA or MeJA marker genes were

changed in the dual cultures with S. plymuthica HRO-C48 or S. maltophilia R3089.
It remains to be seen whether the ABA- and JA-dependent genes are direct target

genes of WRKY18. Pandey and colleagues (2010) reported that the expression of

NPR1 (non-expressor of PR genes), the SA marker, remains unchanged in the

WRKY18/40 double mutant. This goes along with the fact that both mixtures of

volatiles caused no transcriptional changes in NPR1 or other SA marker genes

(Wenke et al. 2012a).

In order to identify potential candidates for the WRKY18-dependent signaling

cascade, a comparison was made of all volatile-dependent genes with the 165 genes

that are deregulated in theWRKY18/40 double mutant (Pandey et al. 2010). It turned

out that there is an overlap of 70 genes (Wenke et al. 2012a). Of these 70 genes, 41

belong to the S. plymuthica HRO-C48 specific data set (p � 1.4 � 10�39), 10 to

the S. maltophilia R3089 specific data set (p � 3.0 � 10�11), and the remaining 19

to the 162 genes regulated independent of the bacterial species. In turn, 10 of the

41 genes of the S. plymuthica HRO-C48 response are involved in the ethylene

signaling pathway: ethylene biosynthesis (1-aminocyclopropane-1-carboxylic acid

synthase 6), signal transduction (mitogen-activated protein kinase 9), and signal

integration (5 ERFs). Participation of ERFs could already be assumed, based on

the volatile-dependent activation of S and GST1 boxes. This was confirmed by

transcriptome analysis of cocultures with S. plymuthica HRO-C48. In addition,

54 W boxes were located in the 19 genes that reacted to the volatiles in a bacterial-

nonspecific manner and to the wrky18/40 double mutation, which means an

average of 2.8 W boxes per promoter. This value leaves open the question whether
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the 19 genes are under the direct control of WRKY18 and/or WRKY40. Aside

from WRKY18, there are eight other TF among the 19 genes: two AP2/ERF,

two MYB factors, two BT proteins (BTB and TAZ domains), SZF1 (salt-tolerance

zinc finger 1), and ZAT10 (zinc finger, C2H2 type). These all play a role in stress

responses and/or in hormone signal transduction.

A time schedule of events that occur in A. thaliana at the morphological,

physiological, and transcriptional level in dual culture assays with both

rhizobacterial strains is summarized in Fig. 16.1.

The observations are divided into strain-specific (in the white/green box in the

middle) and strain-unspecific effects as well as into S. plymuthica (blue boxes) and

S. maltophilia (yellow boxes) volatile-induced effects. The gray, dotted line

represents the time of no return for the response to the S. plymuthica volatiles.

16.5 Which Type of Stress Is Induced by Rhizobacterial

Volatiles?

The triggering of specific plant responses to airborne substances is one aspect of

plant-pathogen interaction. That largely has not been taken into account. Biotic, as

well as abiotic, exogenous or endogenous elicitors (pathogen- or microbe-associated

Fig. 16.1 Overview of transcriptional and morphological as well as physiological alterations in

Arabidopsis thaliana in response to rhizobacterial volatiles
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molecular patterns PAMPs/MAMPs, effectors, and damage-associated molecular

patterns: DAMPs) initiate in plants a number of finely balanced and coordinated

mechanisms. These elicit local or systemic resistance to pathogens or wound-healing

responses following mechanical stress (summarized in, e.g., Chisholm et al. 2006;

Lotze et al. 2007; Boller and Felix 2009). Plants have various means of signal

transduction to elicit such specific responses: ionic currents, formation of reactive

oxygen species, mitogen-activated protein kinase cascades, hormones (SA, JA, ET),

other protein kinases, and phosphatases (summarized in Hématy et al. 2009). Up to

now, the potential of volatile-induced specific responses had not been taken into

account with regard to signal transduction under stress conditions. Therefore, a new

term for volatile interspecies-active elicitors should be introduced at this point:

“microbial volatile-associated molecular patterns” (mVAMPs).

This work focuses on the effects of a mixture of a number of potentially active

volatiles. It could be shown with two rhizobacterial species that different volatile

mixtures are capable of initiating specific responses in A. thaliana at an early point

in time. These responses revealed factors such as WRKY18 that play an important

role in the classical response to pathogens. An overall comparison of the various

stress transcriptomes of Arabidopsis revealed that the two responses studied in dual
cultures are more similar to abiotic stress responses than to those of pathogen

defense. The involvement of several classical transducers of pathogen defense, in

particular with regard to the transcription factors, demonstrates that a considerable

number of PAMP responses up to now may have been induced by volatile

metabolites. On the other hand, the absence of essential PAMP- and DAMP-

regulated genes makes clear that mVAMP-induced stress is a new type of stress.

On the basis of present data, a model was developed that summarizes the new

findings on the responses of plants to bacterial volatiles (Wenke et al. 2012a).

Within the scope of this work, apparently general as well as bacterial species-

specific mVAMP-induced changes in the gene expression of A. thaliana in dual

culture with S. plymuthicaHRO-C48 or S. maltophilia R3089 were discovered. The
bacterial species-specific responses at the transcript level entailed signal transduc-

tion via the hormones ethylene, ABA, and JA after 24 h with S. plymuthica HRO-

C48, whereby the corresponding upstream regulators of the ERF and WRKY40

groups are involved. In contrast, there is the very rapid, specific response to the S.
maltophilia R3089 volatiles with respect to regulation of the redox potential and the
electron transport chain. This was followed by very early transcriptional changes in

the cell wall, which may serve to strengthen the mechanical barrier against the

volatiles. This specificity is likely a unique characteristic of the differing volatile

compositions (Kai et al. 2007).

In both treatments there were various indications that the family of plant-specific

WRKY-TF plays an important role. The essential factor is apparently WRKY18,

regardless of the type of volatile mixture. This factor has been described in the

literature as a negative transcription regulator, which at the same time has an

antagonistic effect on expression of the paralog factor WRKY40 (Xu et al. 2006;

Shen et al. 2007; Chen et al. 2010; Pandey et al. 2010). WRKY18 mutants had a

significantly weaker inhibited phenotype in direct comparison with the wild type.
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Therefore, the hypothesis of a double-negative cascade can be proposed. A yet

unknown gene is repressed via WRKY18. The inactivated target gene itself codes

directly or indirectly for an inactivator of cell death. In WRKY18 mutants, this can

extend the viable phase of the seedlings, since the WRKY18-dependent inactiva-

tion of the cell death repressor has been turned off. This makes it possible for such

mutants to grow significantly better under cocultivation. As to the accumulation of

hydrogen peroxide, it remained unchanged in theWRKY18 mutants, but in the wild

type in dual cultures with S. plymuthica HRO-C48 or S. maltophilia R3089, there

were kinetic differences. These in turn can be explained by bacterial species-

specific responses. These facts as a whole suggest a specific stimulation of hydro-

gen peroxide formation leading to cell death, independent of WRKY18.

This study on the effects of two different mixtures of rhizobacterial volatile

metabolites has revealed a new group of stressors (elicitors), the mVAMPs (micro-

bial volatile-associated molecular patterns). The responses of plants to these

mVAMPs include general as well as bacterial strain-specific changes. At the

same time, the regulation of classical stress marker genes described previously

for stress situations (MAMP, PAMP, DAMP dependent) was not detected, which

underlines the novelty of the mVAMP-dependent stress situation.

16.6 Potentially Biologically Active Individual Substances

Despite the important differences found using gene expression data, cocultivation

with S. plymuthicaHRO-C48 as well as S. maltophilia R3089 causes a considerable
impairment of plant development accompanied by complete chlorosis and a sys-

temic hydrogen peroxide accumulation leading to systemic cell death. It can,

therefore, be concluded that identical or very similar single compounds are respon-

sible for these nonspecific changes. The identification of single active substances,

including their effective concentrations in dual cultures, is very complicated and

difficult. In order to identify potentially active substances in the Petri-dish setups,

known and accessible compounds were tested that might play an important role

in cocultures with S. plymuthica HRO-C48 and S. maltophilia R3089, including

2-phenylethanol, dimethyl disulfide (DMDS), HCN, and NH3. Plants as well as

bacterial and fungal microorganisms emit 2-phenylethanol, the odor of roses.

This compound has antimicrobial properties because of its ability to alter plasma

membrane permeability as well as amino acid and sugar transport (Etschmann et al.

2002). In dual cultures, 20 μmol 2-phenylethanol proved capable of inhibiting

A. thaliana growth by 50 % (Wenke et al. 2012a). It has been seen that another

bacterial volatile, dimethyl disulfide, has a similar affect in dual cultures (Kai et al.

2010). In addition, dimethyl disulfide has insecticidal properties due to its ability to

inhibit cytochrome oxidase of the mitochondrial electron transport chain and the

potassium channel (Dugravot et al. 2003; Gautier et al. 2008). HCN is a much-

discussed compound in connection with volatile-induced inhibition of plants. It is

produced by Pseudomonas, Chromobacterium, and Rhizobium (Blumer and Haas
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2000; Kai et al. 2010; Blom et al. 2011). Even 1 μmol HCN causes a 400 %

decrease in fresh mass (Blom et al. 2011). In several studies with noncyanogenic

wild-type strains or HCN-negative mutants and HCN-producing bacteria, a corre-

lation could be established between HCN production and inhibition of plant growth

(fresh mass, root length) (Blumer and Haas 2000; Blom et al. 2011; Wenke et al.

2012b). During the studies of Blom and colleagues, it was shown that Serratia
species are not capable of producing/releasing hydrogen cyanide, similar to that of

S. odorifera 4Rx13 (Kai et al. 2010). They demonstrated that neither S. plymuthica
HRO-C48 nor S. maltophilia R3089 emit HCN in Petri dishes on NB medium

(Marco Kai unpublished). On the other hand, the emission of ammonia was

detected in both strains (Teresa Weise unpublished), similar to the NH3

concentrations released by S. odorifera 4Rx13 (<1 μmol, Kai et al. 2010). It is

known that ammonia causes decoupling of electron transport (Losada and Arnon

1963), which leads to chlorosis and complete inhibition of plant growth (Britto and

Kronzucker 2002). Since at least 2.5 μmol of ammonia is required to cause a

distinct inhibition of A. thaliana in dual culture (Kai et al. 2010), it can be assumed

that ammonia is not solely responsible for volatile-dependent effects on A. thaliana
in coculture with S. plymuthica HRO-C48 and S. maltophilia R3089, but has the

potential to act synergistically. Based on previous findings, it is concluded that

ammonia, dimethyl disulfide, and 2-phenylethanol have a potentially additive or

synergistic effect on plants. Additional testing of single compounds or mixtures of

these in varying proportions is required to gain more precise information.

16.7 Ecological Aspects of Volatile-Induced Effects

The importance of these effects for the ecosystem should be discussed briefly at this

point. In fact, it should be resolved to what extent these effects are applicable to

natural conditions, despite the simplicity of the testing system. The conditions

chosen proved effective in complete killing the seedlings. The cultivation

parameters, in particular the supply of nutrients available to the bacteria,

corresponded closely to ideal conditions and resulted in bacterial cell counts of

up to 1011 cfu. A quantification of S. plymuthica HRO-C48 as well as S. maltophilia
R3089 cells in dual cultures in the presence or absence of A. thaliana showed that

the seedlings had no significant effect on the rhizobacteria via the air space

(unpublished). However, there have been several reports that root exudates are

effective against microorganisms, so plants are capable of defending themselves

directly (summarized in Bais et al. 2006). This type of interaction via soluble

compounds was prevented by spatial separation in Petri dish assay used here.

Under these artificial conditions, interaction is not only unilateral but also limited

to only two interaction partners. In natural surroundings, a balance within the

rhizosphere community would be achieved by intraspecies and interspecies compe-

tition. New experiments with various combinations of bacteria in plant cell cultures
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have verified that the greater the species diversity, the more stable the microbial

community under stress situations (Chatzinotas et al. 2011).

Another aspect for consideration is the type of stress application. The effective

volatiles are wafted toward the plants via the airspace above the surface, which does

not resemble the natural situation. As for the mechanism of stress recognition, it

remains uncertain the involvement of receptors and which plant organs actually

detect the volatile signals in dual cultures. This indicates that the simplified

experiments carried out here must be followed by performing similar experiment

in natural surroundings (spatial separation in soil) in order to obtain ecologically

relevant information. Volatile metabolites play an ecological role in the transmis-

sion of information under natural conditions. For example, field trials have

demonstrated indirect resistance in maize, which was capable of recruiting

entomopathogenic nematodes by β-caryophyllene emission (Rasman et al. 2005).

In conclusion, the present study provides a sound basis for further studies to shed

light on the obvious potential of volatile substances as elicitors of specific responses

of plants from an ecological viewpoint.

In addition to artificially induced genetic changes, the occurrence of natural

genotypic and phenotypic variants within a species provides an invaluable source

for studying complex responses to ever-changing conditions. More than

750 accessions have been described for A. thaliana. A comparison of

transcriptomes altered by volatiles with the expression profiles of a wide variety

of A. thaliana accessions under normal conditions revealed the ecotype-specific

expression of a large portion of the volatile-regulated genes. This means that the

accessions bring along different initial conditions for responding to volatile

metabolites at the transcript level. Based on these insights, a number of accessions

were tested in dual cultures with S. plymuthicaHRO-C48 and S. maltophiliaR3089.
Aboveground fresh biomass and root development of 21 natural variants of A.
thaliana under microarray conditions with S. plymuthica HRO-C48 were deter-

mined (Wenke et al. 2012b). With regard to the aerial parts of all Arabidopsis
variants selected, there were no significant differences in relative growth inhibition

by the volatiles (Wenke et al. 2012a). Relative inhibition was around 90 % in all

accessions in comparison to untreated controls. Such a high percentage of inhibition

implies that the seedlings were killed quickly. According to previous findings,

chlorosis and killing of plants may be a nonspecific late effect of volatiles, which

should be considered separately from specific immediate responses. With regard to

the roots, accession-specific responses to volatiles of S. plymuthica HRO-C48 were
observed. The greatest variation was found between C24 (82 % inhibition) and Ler

(42 % inhibition). An adaptation to L-glutamate was confirmed by similar values for

relative inhibition of primary root growth of C24 and Ler (approximately 80 % and

40 %, respectively) (Walch-Liu et al. 2006). The natural surroundings of C24 are

unknown. It is assumed that this variant originated in the laboratory and has,

therefore, not undergone natural adaptation to rhizobacterial volatiles. Ler is an

ecotype from Landsberg, Germany, which may be adapted to the effects of volatile

elicitors. This initial data supports the notion that the discussed specificity of

volatile-induced changes in plant processes has an ecological background.
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16.8 Concluding Remarks and Future Perspectives

Volatile signals allow an intra- and interspecies exchange of information between

organisms without direct contact, also beneath the soil surface. The rhizobacteria S.
plymuthica and S. maltophilia emit quite different mixtures of volatiles that cause

enormous transcriptional, physiological, and morphological changes in A. thaliana.
These in turn lead to seedling death within 5 days. Research on bacterial volatiles is

still in its infancy. It will remain an exciting topic in the coming years: identification

of yet unknown infochemicals and in-depth elucidation of their potential as impor-

tant pharmaceutical, ecological, and agricultural effectors. This includes not only

elucidation of the biosynthesis of volatile metabolites but also decryption of

volatile-induced signaling pathways in interaction partners.
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Bernier SP, Létoffé S, Delepierre M, Ghigo JM (2011) Biogenic ammonia modifies antibiotic

resistance in physically separated bacteria. Mol Microbiol 81(3):705–716

Bloemberg GV, Wijfjes AHM, Lamers GEM, Stuurman N, Lugtenberg BJJ (2000) Simultaneous

imaging of Pseudomonas fluorescens WCS365 populations expressing three different

autofluorescent proteins in the rhizosphere: new perspectives for studying microbial

communities. Mol Plant Microbe Interact 13:1170–1176

Blom D, Fabbri C, Eberl L, Weisskopf L (2011) Volatile-mediated killing of Arabidopsis thaliana
by bacteria is mainly mediated due to hydrogen cyanide. Appl Environ Microbiol 77

(3):1000–1008

Blumer C, Haas D (2000) Mechanism, regulation, and ecological role of bacterial cyanide

biosynthesis. Arch Microbiol 173:170–177

16 The Effects of Volatile Metabolites from Rhizobacteria on Arabidopsis thaliana 395



Boland W, Ney P, Jaenicke L, Gassmann G (1984) A “closed-loop-stripping” technique as a

versatile tool for metabolic studies of volatiles. In: Scheuer P (ed) Analysis of volatiles. De

Gruyter, Berlin, pp 371–380

Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular

patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

Britto DT, Kronzucker HJ (2002) NH4 – toxicity in higher plants: a critical review. J Plant Physiol

159:567–584

Bunge M, Araghipour N, Mikoviny T, Dunkl J, Schnitzhofer R, Hansel A, Schinner F, Wisthaler

A, Margesin R, Märk TD (2008) On-line monitoring of microbial volatile metabolites by

proton transfer reaction-mass spectrometry. Appl Environ Microbiol 74:2179–2186
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Rasman S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings

TCJ (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots.

Nature 434:732–737

Robert HS, Quint A, Brand D, Vivian-Smith A, Offringa R (2009) BTB AND TAZ DOMAIN

scaffold proteins perform a crucial function in Arabidopsis development. Plant J 58:109–121

Rossel JB, Wilson PB, Hussain D, Woo NS, Gordon MJ, Mewett OP, Howell KA, Whelan J,

Kazan K, Pogson BJ (2007) Systemic and intracellular response to photooxidative stress in

Arabidopsis. Plant Cell 19:4091–4110
Rudrappa T, Biedrzycki ML, Kunjeti SG, Donofrio NM, Czymmek KJ, Paré PW, Bais HP (2010)
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Chapter 17

Exopolysaccharides of Paenibacillus polymyxa
Rhizobacteria in Plant–Bacterial Interactions

Irina V. Yegorenkova

17.1 Introduction

Among the myriads of bacteria thriving in the plant rhizosphere, some spore-

forming plant-growth-promoting rhizobacteria (PGPR), in particular gram-positive

bacilli and streptomycetes, have attracted special attention because of their

advantages over non-spore formers in product formulation and stable maintenance

in soil (Emmert and Handelsman 1999). Among these, the genus Paenibacillus
(species of a genus previously included in the genus Bacillus, Ash et al. 1993;

Trüper 2005) comprises more than 130 species with the type species Paenibacillus
polymyxa.

The nitrogen-fixing soil rhizobacteria P. polymyxa promote the growth and

development of a wide range of plants through the establishment of effective

associative relationships. This has been associated with the capacities of these

microorganisms for nitrogen fixation, phosphate mobilization, and production of

phytohormones, antibiotics (Mannanov and Sattarova 2001), and a wide range of

lytic enzymes, as well as with their high adaptability to living conditions (Lebuhn

et al. 1997; Da Mota et al. 2002; Lal and Tabacchioni 2009). It has been proven

experimentally that in association with plants, P. polymyxa can increase plant

resistance to biotic and abiotic stresses (Timmusk and Wagner 1999; Khan et al.

2008; McSpadden Gardener 2004; Selim et al. 2005; Timmusk et al. 2005). Some

investigators believe that in this process, a major role is played by P. polymyxa’s
capacities for effective colonization and biofilm formation (Haggag and Timmusk

2008; Timmusk et al. 2009b; Haggag 2010). Certain strains not only colonize the

surface of roots (Bent et al. 2002) but also penetrate the root interior (Shishido et al.

1999).
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P. polymyxa is capable of producing acidic and neutral exopolysaccharides

(EPSs; Matora et al. 1992; Hebbar et al. 1992; Lee et al. 1997; Jung et al. 2007),

which have unparalleled properties. This explains the diversity of spheres of

possible application of these polymers. In addition, P. polymyxa exoglycans have

been assigned an important role in the formation of plant–microbe associations

(Hebbar et al. 1992; Bezzate et al. 2000; Timmusk et al. 2005; Haggag 2007).

P. polymyxa is widely used as the major component of complex bacterial fertilizers,

enriching the environment with excreted polysaccharides (PSs), whose effect on

humans and animals is not quite known yet.

The surface localization of the extracellular PSs confers on them the properties

of mediators in the interaction of P. polymyxa with other micro- and

macroorganisms. In addition, by forming a dense layer on the bacterial surface,

EPSs may shield other cellular structures underneath them and may also determine

bacterial immunological properties. Several investigators (Jung et al. 2007; Chang

et al. 2009, 2010) have shown that the EPSs of P. polymyxa are biologically active

substances (BASs) with an immunomodulatory action.

Despite the intensity of research on these bacterial PSs and the considerable

progress made toward elucidating their physiological role, the properties and the

chemical structure of a wide range of EPSs remain to be fully clarified. A thorough

study of these biopolymers will allow uncovering the functional linkages between

the structure of exoglycans and their biological role, which may facilitate a deeper

understanding of the molecular foundations of intercellular, interspecies, and

interorganismal interactions.

17.2 Ecology and Biotechnological Potential of P. polymyxa

P. polymyxa has attracted considerable interest because of its great biotechnological
potential in different industrial processes and in sustainable agriculture.

17.2.1 Morphological and Physiological Peculiarities

The genus Paenibacillus was created by Ash et al. (1993) to accommodate the

former “group 3” of the genus Bacillus. Paenibacillus species are facultatively

anaerobic, endospore-forming, neutrophilic, periflagellated heterotrophic, and low

G+C gram-positive bacilli (Euzéby 2011). In Latin, paene means almost, and
therefore the Paenibacillus is almost a Bacillus. Comparative 16S rRNA sequence

analyses revealed that rRNA group 3 bacilli represent a phylogenetically distinct

group, exhibit high intragroup sequence relatedness, and are only remotely related

to B. subtilis—the type species of the genus Bacillus. The taxon contains various

species such as B. alvei, B. amylolyticus, B. azotofixans, B. gordonae, B. larvae,
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B. macerans, B. macquariensis, B. pabuli, B. polymyxa, B. pulvifaciens, and

B. validus (Ash et al. 1991).

Phenotypically, species of this group react weakly with Gram’s stain and even

young cultures appear gram negative. They differentiate into ellipsoidal spores,

which distinctly swell the mother cell. The combination of morphology and physi-

ology is sufficient to distinguish rRNA group 3 bacilli from all other mesophilic

species of Bacilluswith the exception of B. circulans, B. lautus, B. lentimorbus, and
B. popilliae. The latter four species are, however, phylogenetically only remotely

related to B. polymyxa; and its relatives and the described rRNA group 3 specific

gene probe provide an unequivocal method for distinguishing these taxa (Ash et al.

1993). Among the 51,713 Firmicutes sequences listed in Ribosomal Database

Project II, the family Paenibacillaceae comprises 1,057 16S rRNA sequences

with 74 as P. polymyxa (as on January 2008) (Lal and Tabacchioni 2009). Strains

of P. polymyxa (the type species of the genus) were found to be capable of

suppressing several plant diseases and promoting plant growth (Benedict and

Langlykke 1947).

Kim et al. (2010) presented the complete genome sequence of P. polymyxa
E681. Its 5.4-Mb genome encodes functions specialized to the plant-associated

lifestyle and characteristics that are beneficial to plants, such as the production of a

plant growth hormone, antibiotics, and hydrolytic enzymes. The complete genome

sequence of an important plant-growth-promoting rhizobacterium, P. polymyxa
SC2, was reported by Ma et al. (2011), who found multiple sets of functional

genes in the genome.

P. polymyxa occurs widely in water, soil, and the rhizosphere (Von der Weid

et al. 2000; Guemouri-Athmani et al. 2000; Cheong et al. 2005). P. polymyxa spores
cause sporangium deformation and have thick walls with a star-shaped section.

These can remain in a dormant state for long periods, being resistant to heat, drying,

radiation, and toxic chemicals (Comas-Riu and Vives-Rego 2002).

17.2.2 Practical Use

Ever since it became known that P. polymyxa can elaborate certain antibiotics,

this microorganism has continued to generate increased interest owing to the

promise for use that it shows. The high activity of N2 fixation and phosphate

mobilization in Paenibacillus was a prerequisite to the use of these bacteria as a

biofertilizer component (Kozyrovskaya et al. 2005). By now, technologies have

been developed for the manufacture and use of P. polymyxa-based biopreparations

[biopolitsid (BSP) and polimiksobakterin], which have found wide application in

Ukrainian agriculture. BSP is based on B. polymyxa strain P, which is antagonistic

to a wide range of phytopathogenic fungi, including such widespread crop

pathogens as Bipolaris sorokiniana, Fusarium avenaceum Sacc., F. graminearum,
Trichothecium roseum, Ascochyta pisi Lib., Cercosporella herpotrichoides Fron.,
Colletotrichum gloeosporioides Penz., Phomopsis leptostromiformis Bubak,
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Rhizoctonia violaceae Tul., and Sclerotinia sclerotiorum Lib. De Bar (http://www.
ecobiology.com.ua). These preparations are polyfunctional in that they promote

transformation of plant-unavailable P-containing mineral and organic compounds,

defense against plant pathogens (through the formation of antibiotics), effective use

of biological N, and enhancement of soil fertility. Similarly, in India, a consortium,

named an Indian Agricultural Research Institute (IARI) microphos culture, was

developed that contains two very efficient phosphate-solubilizing bacteria (Pseu-
domonas striata and B. polymyxa) and three phosphate-solubilizing fungi (Asper-
gillus awamori, A. niger, and Penicillium digitatum) (Gaur 1990).

Some investigators believe that Paenibacillus bacteria stimulate the growth and

development of a wide range of plants (cereals, conifers, legumes, etc.) (Bent et al.

2002; Timmusk et al. 2005), improve the germinability of cultivated plants (Gupta

et al. 2000), and are able to degrade pesticides and insecticides. P. polymyxa
exhibits clear antagonistic activity against soilborne fungal and oomycetic

pathogens (Dijksterhuis et al. 1999; Timmusk 2003; Ryu et al. 2006; Choi et al.

2008; Haggag 2007) (Table 17.1).

In recent years, investigators’ attention has also been turned to nonagriculture-

related possibilities of using P. polymyxa. These include biosorption of metals

(copper) from polluted soils (Piuri et al. 1998; Philip et al. 2000; Acosta et al.

2005; Chu and Kim 2006); degradation of toxic substances, based on P. polymyxa’s
ability to degrade phenanthrene and chlorobenzene (Daane et al. 2001; Vogt et al.

2004); wastewater purification, owing to the ability of these bacteria to decompose

organic waste (Chockalingam et al. 2003); biosynthesis of a range of BASs

(Mavingui and Heulin 1994; Jung et al. 2007); production of enzymes (Budi et al.

2000; Alvarez et al. 2006), e.g., inulinase, which is used in the manufacture of

glucose–fructose syrups (Zherebtsov et al. 2003); cellulose degradation (in combi-

nation with cellulolytic bacteria) (Gorska et al. 2001); and large-scale production of

medicinal antibiotics (Nakajima et al. 1972; Girardin et al. 2002; Zengguo et al.

2007; Tupinambá et al. 2008). The bacterium displays inhibitory activity against

human and animal pathogenic microorganisms (Rosado and Seldin 1993; Seldin

et al. 1999; Alvarez et al. 2006; Ravi et al. 2007) (Table 17.1).

There are data on the utility of P. polymyxa for the building industry and for

mining operations, owing to the ability of Paenibacillus to adhere to minerals and

degrade them (Patra and Natarajan 2004, 2006). Furthermore, predictions have

been made that the use of the latest achievements of biotechnology may lead to

some fermentation processes becoming competitive with the preparation of the

same products (ethanol, butanol, butanediol) from petroleum. Because of its

nonpathogenicity, genetic stability, and ability to ferment variously composed

polysaccharides of plant raw material, P. polymyxa has been assigned to the

group of potentially industrial microorganisms, 2,3-butanediol producers (Ui

et al. 1983; Nakashimada et al. 1998; Syu 2001) (Table 17.1).

Thus, despite the existing limited information on the genomes of P. polymyxa,
the past few decades have seen a growing interest in these bacteria owing to their

great biotechnological potential in various industrial processes and in agriculture

(Lal and Tabacchioni 2009).
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Table 17.1 Characteristics of P. polymyxa

Strain Origin Activity References

P. polymyxa strains
B1 and B2

Wheat rhizosphere Nitrogen fixation Lindberg et al. (1985)

P. polymyxa CF43 Wheat rhizosphere Enhancement of soil porosity Gouzou et al. (1993)

P. polymyxa
PMD216 and

PMD230

Wheat rhizoplane Production of auxin and other

indolic and phenolic

compounds

Lebuhn et al. (1997)

P. polymyxa
PMD112 and

PMD128

Wheat rhizosphere

P. polymyxa
PMD66

Soil

P. polymyxa strain

B2

Wheat rhizosphere Cytokinin production Timmusk et al. (1999)

P. polymyxa strains
B5 and B6

Soil around peanut

roots

Production of EPSs, biocontrol

of Aspergillus niger in the

roots and seeds of peanut

plants

Haggag (2007),

Haggag and

Timmusk (2008)

P. polymyxa SCE2 Soil (Brazil) Protease production,

production of antimicrobial

compounds active against

human pathogenic

microorganisms

Rosado and Seldin

(1993), Seldin

et al. 1999;

Alvarez et al.

(2006)

P. polymyxa strains
CM5-5 and

CM5-6

Barley rhizosphere Production of hydrolytic

enzymes, multitarget and

medium-independent type

of fungal antagonism

Nielsen and Sorensen

(1997)

P. polymyxa Soil, wheat

rhizosphere and

rhizoplane

Production of chitinase Mavingui and Heulin

(1994)

B. polymyxa
ATCC842T

– Production of xylanase Budi et al. (2000)

P. polymyxa EJS-3 Root tissue of

Stemona
japonica

Production of fibrinolytic

enzymes

Lu et al. (2007)

P. polymyxa
ATCC 12321

Spoiled starch 2,3-Butanediol (BDL)

production

Ui et al. (1983), Syu

(2001)

P. polymyxa T129 Soil Biocontrol against Fusarium
oxysporum

Dijksterhuis et al.

(1999)

P. polymyxa strains
B5 and B6

Wheat rhizosphere Biocontrol of the oomycete

plant pathogens

Phytophthora palmivora
and Pythium
aphanidermatum

Timmusk et al. (2003)

P. polymyxa strain

GBR-1

– Suppresses root-knot

nematodes

Khan et al. (2008)

P. polymyxa strains
B2, B3, and B4

Wheat rhizosphere Increased resistance to plant

pathogens (biotic stress)

and drought resistance

(abiotic stress)

Timmusk and

Wagner (1999)

(continued)
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17.2.3 Plant Growth Promotion

P. polymyxa occurs widely in various climatic zones and is found in chernozemic,

brownearth, serozemic (gray), krasnozemic (red), and sod-podzolic soils. P. polymyxa
strains have been isolated from the rhizosphere of a variety of crops such as wheat

(Triticum aestivum), barley (Hordeum gramineae; Lindberg et al. 1985), white

clover (Trifolium repens), perennial ryegrass (Lolium perenne), crested wheatgrass

(Agropyron cristatum; Holl et al. 1988), lodgepole pine (Pinus contorta latifolia;

Table 17.1 (continued)

Strain Origin Activity References

P. polymyxa JB115 Soil Production of β-glucan Jung et al. (2007)

P. polymyxa JB115 Soil β-Glucan as an

immunostimulant or

adjuvant for certain animal

vaccines

Chang et al. (2009,

2010)

P. polymyxa 1460 Soil Production of lectin Karpunina et al.

(2003)

P. polymyxa E681 Winter barley roots Fusaricidin biosynthesis,

biocontrol of fungal

pathogens on sesame plants

Choi et al. (2008),

Ryu et al. (2006)

P. polymyxa
OSY-DF

Fermented foods Coproduction of polymyxin

E1 and lantibiotic

He et al. (2007)

P. polymyxa strain

M

Marine sediment Antagonistic activity against

Vibrio species

Ravi et al. (2007)

P. polymyxa P13 Fermented sausages Polyxin production and

biosorption of heavy

metals

Piuri et al. (1998),

Acosta et al.

(2005)

P. polymyxa
BY-28

Soil Flocculant production Gong et al. (2003)

P. polymyxa strains
B1 and B2

Wheat rhizosphere Biofilm formation Timmusk et al. (2005)

P. polymyxa strains
B2, B5, and B6

Wheat rhizosphere,

peanut

rhizosphere

Biofilm formation,

antagonistic activity

against the oomycete plant

pathogens Phytophthora
palmivora and Pythium
aphanidermatum

Timmusk et al.

(2009b)

P. polymyxa 1465 Soil Production of EPSs,

colonization of wheat-

seedling roots

Yegorenkova et al.

(2008, 2010)

P. polymyxa 1465,

P. polymyxa 92

Soil, wheat roots Production of EPSs, biofilm

formation

Yegorenkova et al.

(2011)

P. polymyxa SC2 – Broad-spectrum antimicrobial

activity

Ma et al. (2011)

P. polymyxa
MB02-1007

Mycorrhizal or

nonmycorrhizal

systems

Biocontrol of Ralstonia
solanacearum in tomato

Algam et al. (2010)

Adapted from Lal and Tabacchioni (2009)
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Holl and Chanway 1992), douglas fir (Pseudotsuga menziesii; Shishido et al.

1996), green bean (Phaseolus vulgaris; Petersen et al. 1996), and garlic (Allium
sativum; Kajimura and Kaneda 1996). In the wheat root zone, these bacteria may

predominate over other N2-fixing anaerobes, and they have a leading role in the

accumulation of N in soils (Döbereiner 1977).

P. polymyxa is grouped with PGPR (Timmusk andWagner 1999; Haggag 2007).

Extensive results are available on the effect of P. polymyxa inoculation on the

yields of major cereal crops, including wheat, barley, rice, sorghum, millet, and

maize (Chanway 1995; Maes and Baeyen 2003). Data from growth chamber

experiments have been published concerning yields and N assimilation in winter

wheat inoculated with various rhizobacteria. It was shown that P. polymyxa inocu-

lation promotes an increase in grain yield (De Freitas 2000). A considerable effect

on the growth and yield of wheat and maize was found with a certain

plant–bacterial combination and was absent with another combination,

demonstrating the existence of an interrelation between the plant genotype and

the bacterial strain (Renni and Thomas 1987; Chanway et al. 1988; Da Mota et al.

2002). The most N accumulation was observed when a wheat cultivar was

inoculated with P. polymyxa isolated from its rhizosphere (Renni and Thomas

1987). Several authors have reported a large positive effect from the introduction

of P. polymyxa strains into the plant rhizosphere, considering such parameters as

plant viability and weight, the concentration of chlorophyll in the leaf mesophyll,

the state of the root, and the formation of root hairs. Seed treatment with

P. polymyxa resulted in better seed germinability and in faster seedling growth

(Maes and Baeyen 2003).

Despite the numerous studies of plant interactions with associative N2-fixing and

growth-promoting bacteria, there have so far been no reliable predictions of plant

response to inoculation. This response, however, may vary from positive or neutral

to negative; and P. polymyxa may have adverse effects on plants. For example,

when roots of Arabidopsis thaliana were soaked for 24 h in cultures of P. polymyxa
strains B2, B3, and B4 in L medium, plants responded with 30 % growth reduction

and a stunted root system, compared to uninoculated plants. These effects were

observed in a gnotobiotic system and in soil, pointing to a mild pathogenic effect

(Timmusk and Wagner 1999; Timmusk 2003). Consequently, under these

conditions, P. polymyxa can be considered a deleterious rhizobacterium (DRB).

Furthermore, inoculation with P. polymyxa strain L6-16R promoted growth of

lodgepole pine in one location, inhibited it in a second site, and had no discernible

effect in a third site (Chanway and Holl 1994).

The inconsistency of results from P. polymyxa inoculations gave impetus to new

research on the use of combined inoculation of bacilli and other microorganisms.

Combined inoculation of plants with associative bacteria of different genera is one

of the most advanced technologies in agriculture. Skvortsova et al. (1998), using

cereal grasses, studied the effect of inoculation with two-component cultures

composed of B. polymyxa and various Pseudomonas strains on N2 fixation, denitri-

fication, and heterotrophic nitrification. Inoculation with such cultures not only

produced substantial increases in yields but also significantly enhanced crop N
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content. More specifically, yields increased up to 25–77 %. Combined inoculation

with Azospirillum brasilense, Azotobacter chroococcum, B. polymyxa, and

Enterobacter cloacae was found to have positive effects on the yield, dry weight,

and total nitrogen of winter wheat (De Freitas 2000); and P. polymyxa inoculation,

alone or in combination with Rhizobium, enhanced the growth of lentil and

protected the plant againstMeloidogyne javanica nematodes (Siddiqui et al. 2007).
For a long time, the beneficial effect of associative rhizosphere bacteria has been

attributed largely to fixation of molecular N (a parallel drawn with symbiotic N2

fixation). In P. polymyxa, however, N2 fixation makes only a partial contribution to

the stimulation of plant growth (Chanway and Holl 1991). Apart from the improve-

ment of N nutrition, these bacteria have other mechanisms responsible for the

positive effect on plants (Costacurta and Vanderleyden 1995). Several authors

have reported that P. polymyxa produces hormones of the cytokinin group

(Timmusk et al. 1999) and auxins, specifically indole-3-acetic acid (IAA) (Holl

et al. 1988; Lebuhn et al. 1997). Treatment with auxins accelerated bacterial

colonization of roots and promoted the formation of paranodules (Narula et al.

2006). Lebuhn et al. (1997) examined the actual and potential abilities to form

indolic and phenolic compounds on different media in P. polymyxa isolated at

different distances from the roots of wheat. They observed a gradual decrease in the
potential for IAA production by the strains isolated from nonrhizosphere soil, as

compared with those from the rhizosphere and the rhizoplane. These metabolic

differences indicate that near plant roots, P. polymyxa subpopulations undergo

selection for genetic and physiological parameters.

Most studies of biological variability within the P. polymyxa species have

pointed out the influence of various factors on the degree of bacterial genetic

polymorphism. Specifically, a study of the effect of plant development stages on

a population of P. polymyxa in the maize rhizosphere demonstrated that the

population observed in the middle stage of plant growth (30–60 days after planting)

was more homogeneous than that in the initial stage (10 days) or after 90 days of

maize growth (Von der Weid et al. 2000). Long-term cultivation of wheat on

Algerian soils (>70 years) was reported to change the rhizosphere population of

P. polymyxa, increasing its size, decreasing bacterial diversity, choosing the domi-

nant genotype, and enhancing N2 fixation (Guemouri-Athmani et al. 2000).

The mechanism of P. polymyxa’s stimulatory effect on plants is not quite clear

yet. It is believed that the effectiveness of plant–P. polymyxa associations is

determined by such bacterial characteristics as N2-fixation ability (Lindberg et al.

1985); production of phytohormones (Holl et al. 1988; Lebuhn et al. 1997;

Timmusk et al. 1999), antibiotics (Rosado and Seldin 1993), hydrolytic enzymes

(Nielsen and Sorensen 1997), and exopolysaccharides (Hebbar et al. 1992; Bezzate

et al. 2000; Timmusk et al. 2005; Haggag 2007; Yegorenkova et al. 2010); and

improvement of the mineral nutrition and aquatic balance of inoculated plants

through phosphate mobilization (Singh and Singh 1993) and soil structure amelio-

ration (Bezzate et al. 2000; Czames et al. 2000).

The significance of the above mechanisms of P. polymyxa’s effect on plants is

different under different conditions. Apart from climatic factors, a large role is
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played by the species and strain characteristics of the bacteria used and by the

species and cultivar peculiarities of the plants used. It is believed that growth-

promoting factors should be considered collectively, because trying to emphasize

the role of any one may lead to a substantial understatement of the effect of each of

them (Bashan and Holguin 1997).

17.3 Role of EPSs in the Formation of Plant–Bacterial

Associations

Microbial EPSs are the primary or secondary metabolites produced by a variety of

microorganisms. These EPSs have been widely used within bioindustries, because

the production cost of microbial EPSs is lower than that of algal or plant

polysaccharides (Kumar et al. 2007). Additionally, microbial EPSs are nontoxic,

biodegradable, and environmentally benign (Shoda and Sugano 2005). P. polymyxa
elaborates a broad range of neutral and acidic exopolysaccharides (Matora et al.

1992; Hebbar et al. 1992; Lee et al. 1997; Haggag 2007; Jung et al. 2007), which

have diverse structures and physical–chemical properties. Most of them are of low

or no toxicity. The EPSs of P. polymyxa are BASs with immunotropic activity (Jung

et al. 2007). They have been assumed to be essential for the development of

plant–microbial associations (Bezzate et al. 2000; Timmusk et al. 2005; Haggag

2007).

17.3.1 Physical–Chemical Characterization, Properties, and
Use of P. polymyxa EPSs

P. polymyxa can synthesize neutral polysaccharides [levan (Iman and Abd-Allah

1974; Han 1989), mannan (Ball and Adams 1959), and glucan (Jung et al. 2007)],

acidic polysaccharides, or heteropolysaccharides (Ninomiya et al. 1968a; Glukhova

et al. 1986; Matora et al. 1992; Yegorenkova et al. 2008).

Among other bacteria, P. polymyxa stands out as one of the most active levan

producers. The levans are 2,6-bonded, sometimes branched, regular polymers with

a repeating unit (Han 1989, 1990). The levan of P. polymyxa can be used to

suppress allotransplant rejection; to prolong the action of pharmaceutics; to act as

an immunomodulator or a plasma substitute; to increase soil water capacity; to

improve plant seed germinability (Iman and Abd-Allah 1974); to prepare pure

fructose (Tkachenko and Sevryugina 1989); and to encapsulate substances in the

manufacture of cosmetics and in paper and fabric printing (Han 1990). P. polymyxa
JB115 was isolated from Korean soil as a glucan producer for the development

of animal feed additives. As shown by IR, 1Н NMR, and 13С NMR spectroscopy,

the JB115 glucan is a linear glucan that has β-(1!3) and β-(1!6) structure.
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High-molecular-weight glucan (above 100 kDa) can be used as an animal feed

additive for immune enhancement and as a potential antitumor agent for livestock

(Jung et al. 2007; Chang et al. 2009).

The heteropolysaccharides of P. polymyxa have diverse compositions,

structures, and properties. The bacteria B. polymyxa 458, isolated in Japan, synthe-

size a highly viscous, nontoxic EPS that is composed of residues of glucose (Glc),

mannose (Man), and glucuronic acid (GlcA) at a 7:7:2 molar ratio (Mitsuda et al.

1981). Heating and cooling EPS solutions (>0.7 %) gives rise to agar-like gels,

but their strength is slightly inferior to that of gels of the same concentration.

P. polymyxa strain S-4 produces an acidic EPS that is composed of β-D-Glc, D-Man,

D-galactose (Gal), D-GlcA, and D-ManA at a 3:3:1:2:1 ratio. In the main chain of this

polymer, Glc and Gal are (1!3)-bonded, Man and Gal are (1!4)-bonded, and GlcA

and Man are (1!3)-bonded; the side chains contain Glc, Man, and ManA, which are

mostly (1!4)-bonded. The EPS has an “antisclerotic” action by decreasing the

concentration of cholesterol in blood and the liver (Fukui et al. 1985).

When grown on saccharose, P. polymyxa 271 (FERM P-1824), isolated from

Japanese soil, synthesizes two EPSs—an acidic one and a neutral one (Ninomiya

et al. 1968a). When grown on glucose, it produces only the acidic polymer, which is

composed of D-Glc, D-Man, D-Gal, and D-GlcA at a 3:3:1:2 ratio (Ninomiya et al.

1968b). The neutral EPS is made up of Glc, Man, Gal, and fructose (Fru). The

molecular mass (Mm) of the acidic EPS is greater than 1 MDa, and the EPS forms

highly viscous aqueous solutions (Ninomiya and Kizaki 1969). An important

peculiarity of this EPS is that it forms a stable viscoelastic gel with 40 % ethanol,

with the polymer concentration being 2 %. This polymer has both a technical and a

pharmacological action. The EPS and its cationic forms lower the concentrations of

lipids and cholesterol in blood and the liver, and they reduce the atherogenic index,

reducing the probability of atherosclerosis and myocardial infarction (Tanaka et al.

1982).

P. polymyxa mutant strain 1459В excretes two EPSs, one being acidic, viscous,

and of a high Mm and the other being weakly viscous, neutral, and of a lower Mm

(Glukhova et al. 1986). The ratio between the EPSs depends on the source of carbon

in the medium. The neutral EPS is a levan, and the acidic EPS is made up of Glc,

Gal, Man, and GlcA residues and trace amounts of arabinose and xylose (Xyl)

(Glukhova et al. 1986). Solutions of 1459В EPS are compatible with high

concentrations of mono- and bivalent cations and Al3+ at pH 3–11. The acidic

EPS forms thermolabile elastic gels. It was suggested that the levan of P. polymyxa
1459В be used for the preparation of pure fructose, as an immunomodulator, and as

a blood substitute, and that the acidic EPS be used for increasing oil reservoir

recovery, preparing drill fluids, and regulating the rheological properties of fresh-

water and mineral water solutions.

A new highly viscous EPS, named polymyxan, was described by Matora et al.

(1992). It is synthesized by the producer strain P. polymyxa 88A, obtained by short-
term treatment with intense microwave radiation at a frequency of 2,375 MHz.

Polymyxan consists of an acidic, highly viscous PS (Mm of 1–10 MDa, composition
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of 35 % Glc, 36 % Man, 7 % Gal, and 21 % GlcA) and a neutral, low-viscous PS

(Mm of 100–300 kDa), which is a glucomannan with equal contents of both

monosaccharides and with trace amounts of uronic acids. The structure of this

EPS is believed by the authors to be irregular. Data were presented on the use of

polymyxan in bread making and also as a polymeric agent for the preparation of

drill fluids and the conservation of wells (Matora et al. 1992).

Hebbar et al. (1992) established that P. polymyxa АТСС 842 and АТСС 21551

synthesize EPSs composed of Glc, Gal, Man, uronic acids, pyruvate, acetate, and

succinate. The EPSs of batch-cultivated P. polymyxa 1465 were found to contain

neutral and acidic fractions and to be heterogeneous PSs represented by a complex

of macromolecules with Mms ranging from 7 � 104 to 2 � 106 Da (Yegorenkova

et al. 2008). When the bacteria were grown on glucose, the acidic component

predominated, which correlated with the higher viscosity of aqueous solutions of

the EPSs. The exoglycans were found to contain Glc, Man, Gal, and uronic acids.

Rabbit polyclonal antibodies were developed to an isolated EPS of P. polymyxa
1465, and the presence of common EPS antigenic determinants within the species

P. polymyxa was shown (Yegorenkova et al. 2008).

P. polymyxa strain P13 was described as an EPS producer by Acosta et al.

(2005). Those authors found that 100 ml of a stationary-phase P13 culture formed

27 (�4) mg (�SD) and 15 (�4) mg (�SD) EPS in BHI medium containing 1 M

NaCl and in control BHI medium, respectively. This strain exhibited a significant

capacity for biosorption of Cu(II) originating from several industries. EPS produc-

tion was associated with hyperosmotic stress caused by high salt content (1 M

NaCl), which led to a significant increase in the biosorption capacity of whole cells

(Acosta et al. 2005) (Table 17.1). The adsorption of P. polymyxa cells or their EPSs
on the surface of several minerals has been reported as a method to selectively

separate metal ions from a binary mixture such as sphalerite and galena, galena and

pyrite, suggesting their use in biomineral processing by means of microbial flota-

tion and flocculation (Deo and Natarajan 1998; Patra and Natarajan 2004, 2006).

Analysis of the literature data shows that the process of exoglycan biosynthesis

and their monosaccharide composition are highly labile—the yield of EPSs, their

composition, and their physical–chemical properties depend on several factors

(Matora et al. 1992; Lee et al. 1997; Yegorenkova et al. 2008). Sutherland (1972,

1994) examined the interrelation between the structure of polysaccharides and their

physical characteristics and functions. There is need for accumulation of data on the

chemical structure of these important macromolecules before any justified

inferences about the functions of concrete glycopolymers can be made.

The richness of the microbial world determines the diversity of the structures

and physical–chemical and biological properties of EPSs, which dictates the possi-

bility of their wide use. Microbial EPSs can be used as an alternative to the

traditionally applied synthetic or natural polymers and can also be considered to

be new polymers (Sutherland 1986). PSs have already found application in several

fields, including environmental management (soil cleanup from petroleum

residues), the petroleum industry (enhancement of the effectiveness of petroleum

production), metallurgy (involvement in the extraction, processing, and
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beneficiation of ore) (Santhiya et al. 2002; Acosta et al. 2005), agriculture

(enhancement of crop capacity and soil fertilization), food production (emulsifiers,

biofilms, and thickeners) (Matora et al. 1992; Moon et al. 2006), the cosmetic

industry (emulsions), and medicine (blood plasma substitutes, drug carriers, and

drug components) (Zanchetta et al. 2003). This series will be extended as

polysaccharides and their active producers come to be better understood.

Here, I present briefly a selection of data on the EPSs of P. polymyxa, because a
more detailed consideration would fall outside the scope of the problem being

dealt with.

17.3.2 The Capacity of P. polymyxa for Plant Root
Colonization and Root Hair Deformation

Effective colonization of plant roots by associative bacteria and the maintenance of

population size at an ecologically significant level play an important role in plant

growth promotion, regardless of the mechanism of action (production of

metabolites and of antibiotics against phytopathogens, stimulation with nutrients,

or induction of plant resistance) (Timmusk et al. 2005).

17.3.2.1 Attachment to Roots

Notwithstanding the fact that biological control has been used for decades, its use

has not been consistent, possibly because its nature and action have not been

understood fully (Gamalero et al. 2003). The plant root is not a passive target for

soil organisms (Timmusk et al. 2005); therefore, it became necessary to accumulate

experimental data concerning the mechanisms responsible for the formation of

plant–bacterial associations. The methods used for the study of root colonization

by growth-promoting bacteria have been covered in sufficient detail in a review

by Gamalero et al. (2003). The endophytic colonization of seedling roots by

P. polymyxa has been studied with fir (Shishido et al. 1999), pine (Bent et al.

2002), and Arabidopsis (Timmusk et al. 2005). Visualization of P. polymyxa
through FITC-labeled antibodies has demonstrated that this bacterium can colonize

the surface of roots (Bent et al. 2002) and can penetrate the root interior (Shishido

et al. 1999). P. polymyxawas found accumulating in the intercellular spaces outside

the vascular cylinder. According to the data of several authors, there was no

dispersal at a systemic level, because the bacteria were found to be absent from

aerial tissue (Timmusk et al. 2005).

Timmusk et al. (2005), using fluorescence stereomicroscopy, examined the

localization of P. polymyxa strains B1 and B2 and the formation of biofilms on

plant roots in model experiments and in soil systems. They found that colonization

begins at the root tip, where the bacteria form microcolonies composed of cells and
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a semitransparent matrix. Subsequently (within 2 h), the microcolonies spread over

the surface and aggregate, forming biofilms. Root invasion was observed after 5 h

of contact, and in a longer period of time, the differentiation zone of the root was

colonized. It seems logical that the rhizobacteria predominated at the sites at which

the amount of nutrients was greatest and at which nutrient inflow was associated

with young plant tissues. Root exudates, secretions, and/or lysates accumulate in

such root regions as the tip, the root hairs, and the epithelial cracks at the sites of

recent lateral-root formation (Timmusk et al. 2005). The greatest density of the

bacteria occurred on the surface of young root tissues, which possibly has to do with

the greater intensity of the physiological processes occurring in them (Bent et al.

2002). Timmusk et al. (2005) demonstrated that P. polymyxa colonizes the root

regions targeted by phytopathogens, thereby keeping these bacteria from accessing

the plant and fulfilling a protective function. The polysaccharides produced by

P. polymyxa are highly complex, and only few organisms may possess the specific

enzymatic machinery for their degradation, e.g., P. polymyxa itself (Bezzate et al.

1994). For investigating bacterial interactions in natural systems, real-time PCR for

the rapid detection of biofilm-forming bacteria was also developed (Timmusk et al.

2009a).

According to the data of many investigators, the complex process of

plant–bacterial interaction begins in mucigel, which covers the plant root hairs in

large quantities. The interaction of Paenibacillus lectins with the carbohydrate

moiety of the wheat-root exocomponent fraction changed the enzyme activity of

the lectins, as did the interaction with carbohydrate preparations (Karpunina et al.

2003). The authors believe that in the contact of bacteria with plants, a large role is

initially played by the adhesive properties of bacterial lectins, which are realized

through lectin interactions with the specific sugars present in mucigel.

The formation of N2-fixing systems calls for a physical and functional interac-

tion between bacterial and plant cells, in which, along with adhesion, a great role is

played by enzymatic processes. P. polymyxa has complex specific relationships

with its plant host at a molecular–genetic level, altering the expression profile for

the host’s genes (Timmusk and Wagner 1999). There have been reports of stimula-

tion of the activities of chitinase and β-1,3-D-glucanase (Haggag 2007; Algam et al.

2010) and of glucose-6-phosphate dehydrogenase, glutathione reductase, and glu-

tathione S-transferase (Cakmakci et al. 2007) in P. polymyxa-inoculated plants. It is
known that increased chitinase and β-1,3-D-glucanase activities in plants correlate

with resistance to phytopathogens (Timmusk and Wagner 1999). Numerous

publications attest that besides plant hydrolytic enzymes, the degradation (hydroly-

sis) of the plant cell wall involves the work of the hydrolytic enzymes of certain soil

bacteria (Ljunggren and Fåhraeus 1961; Hubbell et al. 1978; Tien et al. 1981). From

the totality of experimental data obtained, some authors speculate that the penetra-

tion of N2-fixing bacteria into plant root tissues is facilitated by Rhizobium
agglutinins and Paenibacillus lectins, as well as by the enzymatic activity of

rhizobial and bacillar cells (Karpunina et al. 2003).

Cell-associated extracellular rhizobial PSs, including lipopolysaccharides

(LPSs), the acidic capsular polysaccharides (CPSs), and EPSs, have also been
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considered as potential symbiotic factors. York et al. (1996) proposed that EPSs

may be involved in cell attachment to plants and in plant infection, ensure protec-

tion against plant defense responses, act as signal molecules, and function similarly

to flavonoids and lipochitooligosaccharides in the formation of symbiosis. A good

example is the oversaturation of the genome of the alfalfa rhizobium Sinorhizobium
meliloti with genes of EPS synthesis (Kahn et al. 2004). Owing to this, deletion

mutants in the exo clusters can preserve their symbiotic properties, which are very

important, as normal synthesis of EPSs is necessary for the development of nodules

(Provorov et al. 2008). Many investigators (Michiels et al. 1991; Yegorenkova et al.

2001) believe that the EPSs of associative bacteria of the genus Azospirillum are

also involved in the realization of contact between bacterial and plant cells. It has

repeatedly been shown that azospirilla on plant roots or root hairs were observed as

aggregates surrounded by mucigel or fibril-like material (Bashan et al. 1986; Okon

and Kapulnik 1986).

In the root environment, i.e., the rhizosphere, bacterial EPSs contribute to soil

aggregation by cementing particles together (Chenu 1995). Inoculation of plants

with EPS-producing rhizobacteria, such as Pantoea agglomerans (Amellal et al.

1998), Rhizobium sp. YAS34 (Alami et al. 2000; Santaella et al. 2008), and

Rhizobium sp. KYGT207 (Kaci et al. 2005), modifies the aggregation of root-

adhering soil and eventually improves plant growth.

As said earlier, P. polymyxa can synthesize various EPSs, which are believed to

play a large role in cell adhesion to diverse substrates (Deo et al. 2001;

Vijayalakshmi and Raichur 2002; Sharma and Rao 2003) and in the formation of

plant–microbe associations (Hebbar et al. 1992; Bezzate et al. 2000; Timmusk et al.

2005).

Gouzou et al. (1993) showed that inoculation of wheat with a rhizosphere strain

of P. polymyxa increased the mass of soil adhering to the roots by 57 %. Compari-

son of aggregate size distributions suggested a more porous structure for the

inoculated rhizosphere soil than for the uninoculated soil. Bezzate et al. (2000)

tested the role of levan, a fructosyl polymer produced by strain CF43, in the

aggregation of soil adhering to wheat roots. Inoculation of wheat roots with

P. polymyxa CF43 increased the mass of root-adhering soil. The P. polymyxa
gene homologous to the B. subtilis sacB gene encoding levansucrase was cloned

and sequenced. The corresponding gene product synthesized a high-molecular-

weight levan. In contrast, inoculation with P. polymyxa mutant strain SB03 had

no effect on the mass of root-adhering soil, compared with the noninoculated

treatment. P. polymyxa SB03 is a mutant whose gene encoding the enzyme for

levan synthesis, sacB, was inactivated. Thus, the results strongly suggest that levan
synthesis by strain CF43 is the main mechanism involved in the improvement of the

structure of root-adhering soil (Bezzate et al. 2000). Soil structure determines the

total volume of soil pores and their size distribution, geometry, and connectivity.

The resulting properties of the soil and rhizosphere, such as aeration, resistance to

root penetration, water reserves, and therefore water and solute movement, are

essential parameters that control plant growth. The stability of soil structure is,

therefore, one of the basic determinants of the quality of soil and the rhizosphere,
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if not of ecosystem stability (Santaella et al. 2008). Consequently, inoculation by

P. polymyxa can play an important role in water retention and nutrient transfer

in the rhizosphere by increasing porosity.

The effect of two EPS-producing strains of P. polymyxa (B5 and B6) on the

control of crown rot disease caused by Aspergillus niger on peanut was investigated
(Haggag 2007; Haggag and Timmusk 2008). Both strains were inhibitory to

A. niger, but strain B5 proved to be more active. Bacterial growth and protein

and biopolymer production were evaluated. Carbohydrate analysis using various

color reactions, infrared spectroscopy, and high-performance liquid chromatogra-

phy revealed that the biopolymer is a homopolysaccharide consisting of various

sugars, including Glc, Gal, Man, and Xyl. It was found that P. polymyxa B5

produces high levels of sugars compared to the other strain used (Haggag 2007).

The ability of P. polymyxa to colonize the peanut rhizosphere was evaluated for

60 days (greenhouse) and 140 days (field experiment). The colonization efficiency

of B5 was significantly higher than was that of B6 during the first 30 and 60 days

(in the greenhouse and in the field experiment, respectively). In both experiments,

the author observed a substantial increase in the number of peanut nodules and

in plant growth and performance when seeds were treated with B5, as compared

to treatment with B6 or to the control (untreated plants) (Haggag 2007).

Enzyme-linked immunosorbent assay (ELISA) with rabbit polyclonal antibodies

developed to an isolated EPS of P. polymyxa 1465 was used to evaluate the

colonization of wheat-seedling roots by this bacterium (Yegorenkova et al. 2010).

The assay conditions were optimized for detection of the P. polymyxa EPS

determinants forming part of the samples used (homogenates of inoculated roots).

The dynamics of the immunoenzymatic revealing of specific polysaccharidic

antigenic determinants in the samples’ composition correlated with an increase in

P. polymyxa numbers on the roots found by estimation of colony-forming units

(Fig. 17.1). The dynamics of P. polymyxa attachment was similar to that found for

other rhizosphere bacteria: the number of attached cells increased with an extension

of the incubation time, and the cell number on the roots stabilized by 18–24 h of

contact (Michiels et al. 1991; Zamudio and Bastarrachea 1994; Yegorenkova et al.

2001).

17.3.2.2 Morphological Changes in Root Hairs

The deformation of root hairs is one of the earliest responses of plants to the

presence of bacteria in their environment. Some investigators (Gaskins and Hubbell

1979; Baldani et al. 1983) believe that deformation may serve as a quantitative

measure of plant responsiveness to inoculation, i.e., it characterizes the activity of a

given strain toward the plant. The morphological changes in roots that are induced

by soil bacteria have been studied in sufficient detail for the legume–Rhizobium
symbiosis (Halverson and Stacey 1986) and the plant–Azospirillum association

(Okon and Kapulnik 1986). Several types of root hair deformations have been

recorded, including branches of equal lengths, branches of different lengths, and
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other deformations (curlings, swellings, wavy hairs, etc.). Symmetrical “tuning

fork” branches have been observed mostly when homologous strains were used.

The compounds inducing such changes in roots are different in nature, including

both high- and low-molecular-weight components. These compounds have been

best studied for legume–rhizobial systems. It is known that Rhizobium EPSs can

stimulate morphological changes in legume root hairs that are similar to the

changes produced by whole bacterial cells (Halverson and Stacey 1986). The effect

of low-molecular-weight compounds on the deformation of root hairs has been well

documented (Patriquin et al. 1983). For Azospirillum bacteria, the inducers of

morphological changes in root hairs have been found to include both low- and

high-molecular-weight compounds. Patriquin et al. (1983) reported the induction of

deformations by the supernatant liquid of A. brasilense Sp245. Several authors have
described the influence on root morphology of the phytohormones produced by

azospirilla (Tien et al. 1979) and also of the PS-containing complexes localized in

the capsular material and excreted into the environment during bacterial growth

(Konnova et al. 1995). It was established that the LPSs of azospirilla also induced

deformations and that the changes in the LPS composition of the A. brasilense
Sp245 outer membrane as a result of omegon insertion into the 120 MDa plasmid

decreased the biological activity of the mutant strains toward wheat-seedling roots

(Fedonenko et al. 2001). Boyko et al. (2011) concluded that the activity of the LPSs

of serogroup 1 azospirilla toward wheat root hair morphology is determined by the

fatty acid ratio and the length of the O chains and that in azospirilla whose

Fig. 17.1 ELISA

determination of the number

of specific bacterial antigenic

determinants in homogenates

of wheat roots inoculated with

P. polymyxa 1465 (a), as

compared with the results of

CFU counting (b) (taken from

Yegorenkova et al. 2010)
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O-specific PSs are branched heteropolysaccharides, LPS activity also depends on

the character of the side chain substituents.

The molecular mechanism of root hair deformation is fairly complex and almost

unknown. Possibly, it includes a chain of reactions, one of which may be the

interaction of the root surface receptors with the PS-containing complexes (or

their components) on the bacterial surface (Konnova et al. 1995). In the opinion

of Patriquin et al. (1983), the deformations may result from altered synthesis in the

root hair walls or from stabilization of the cell walls during their growth.

There have been very few publications addressed to the study of the morphology

of plant roots inoculated with P. polymyxa. When legume plants were inoculated

with the cocultures Rhizobium etli and P. polymyxa, the latter indirectly (through

the plant) promoted an increase in the population size of R. etli (Petersen et al.

1996). The authors observed an increase in the length of lateral roots and in the

number of nodules in the plants. A similar effect was found upon dual inoculation

of legumes with Azospirillum and Rhizobium (Andreyeva et al. 1993). This was

explained by Azospirillum stimulation of nodule formation, nodule functioning, and

possibly plant metabolism. The phytohormones produced by Azospirillum facilitate

epidermal–cellular differentiation in root hairs, increasing the number of potential

sites for rhizobial infection (Yahalom et al. 1991).

The ability of EPS preparations from several P. polymyxa strains to induce root

hair deformations was studied with seedlings of wheat (cv. Saratovskaya 29).

Fåhraeus’s glass-slide technique was used to test the EPSs of several P. polymyxa
strains, including 1465, 1460, 1459, 88A, and 92. It was demonstrated that the

isolated EPSs can induce deformations with different intensities, which may count

in favor of the assumption that the exoglycans of P. polymyxa have an active role in
the formation of plant–microbe associations (Yegorenkova et al. 2013).

Among aerobic spore-forming bacteria of the genus Bacillus, a B. subtilis strain,
IB-22, was revealed that excels at cytokinin production. In the culture liquid of this

strain, a novel form of biologically active cytokinins was found for the first time: a

complex formed between hormones and PSs (Arkhipova 1999). It was suggested

that slow dissociation of cytokinins from this complex could have ensured the

prolonged and nontoxic action on plants.

17.3.3 EPSs in Biofilms

In natural ecosystems and at industrial and healthcare facilities, microorganisms

exist not as free-living cells suspended in their environment (plankton) but mainly

as an organized community attached to various biotic and abiotic surfaces. Such

communities are called biofilms (Davey and O’Toole 2000). A biofilm is

characterized by cells that are attached to a surface or to one another, are enclosed

in a matrix of extracellular polymeric substances synthesized by them, and demon-

strate a phenotypic change manifested as a change in the growth parameters and in

the expression of specific genes (Donlan and Costerton 2002). The development of
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biofilm communities is a major strategy used by bacteria for survival in the external

milieu. In biofilms, bacteria are stuck to each other by complex intercellular

linkages and are functionally similar to multicellular organisms (Ilyina et al.

2004). The EPSs of the contributing microbial flora provide a major part of the

dry matter of biofilms, flocs, and related structures. These polymers also play major

roles in determining the physical properties and structures of the microbial

agglomerations (Sutherland 2001).

17.3.3.1 Biofilm Formation

A bacterial biofilm is formed as a result of complex coordinated interactions of

microorganisms with a surface. There are complete reviews in the literature cover-

ing biofilm biology and genetics (Watnick and Kolter 2000; Ilyina et al. 2004;

Branda et al. 2005; Costerton 2007; Lloyd et al. 2007; Moons et al. 2009; Plakunov

et al. 2010; Smirnova et al. 2010). Several investigators have considered the

ecological implications of biofilm formation by associative bacteria (Morris and

Monier 2003; Danhorn and Fuqua 2007; Eberl et al. 2007; Haggag 2010). Most

generally, the sequence of events is as follows.

Biofilm formation begins with an initial, reversible attachment, when planktonic

bacteria make contact with the substrate and become temporarily fixed, with some

cells being able to detach. In this process, an important role is played by flagella.

This stage involves the work of nonspecific physicochemical forces of interaction

between the molecules and structures on the surfaces of the microorganism and the

solid substrate (Van der Waals, hydrophobic, electrostatic, and London dispersion

forces) (Van Loosdrecht 1988). The next developmental stages are the irreversible

attachment to the surface; the formation of microcolonies, with aggregation of

already attached cells; the formation of macrocolonies; and, finally, the aging of

the macrocolonies with the formation of biofilms. The biofilm development cycle is

completed when the bacteria resume their planktonic lifestyle (Ilyina et al. 2004).

The start of biofilm formation may be signaled by osmolarity, the pH of the

medium, soil content of metals, oxygen supply, temperature, and other factors

(Davey and O’Toole 2000; Karatan and Watnick 2009).

There is evidence that in biofilms, cells differentiate according to function—the

motile, matrix-producing, sporulating cells are located at a distance away from one

another and are present in different parts of a biofilm (Vlamakis et al. 2008).

Biofilm formation is a complex process that requires the activity of a multitude of

genes responsible for both general functions (such as motility, metabolism, and

maintenance of cell structure) and special functions, which ensure biofilm forma-

tion. In the process of biofilm aging, a multitude of genes are differentially

expressed, the work of which requires a regulatory system that would ensure control

of expression (Voloshin et al. 2005). In the past decade, there has been an explosion

of studies that have led to the discovery of a wide variety of “communication

molecules,” which are secreted to the medium and induce specific changes in

bacterial metabolism when a definite critical concentration of producer cells is
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reached. This principle, named quorum sensing (QS), is effected at the cost of

various chemical compounds, including low-molecular-weight substances [second-

ary metabolic products, peptides, lipids, and secreted proteins (Voloshin and

Kaprelyants 2004)]. For broader coverage, readers are referred to Faure et al.

(2009), Dickschat (2010), and Thoendel and Horswill (2010).

17.3.3.2 Methods of Biofilm Visualization

In recent years, methods have been developed to prepare biofilms in artificial

systems, thereby creating controlled conditions for biofilm study. Biofilms are

estimated in microtitration plates by spectrophotometric counting of a specific

stain bound by the cells in the biofilm (Ferrieres and Clarke 2003). Biofilm

formation is also modeled in flow-through chambers and test tubes and on the

surface of cover slips and other objects. For studies of living cells and for

observations of cells in motion, a phase-contrast microscope and an interference

microscope are employed (Smirnova et al. 2010). Stained preparations are exam-

ined by using stains specific for the matrix as the major biofilm component. These

include the vital dye Congo red, which binds to cellulose and the curli pili in the

process of staining Salmonella biofilm (Römling et al. 1998); fuchsin (Yi et al.

2004); and another cellulose indicator, the fluorescent vital dye calcofluor (Solano

et al. 2002). For light-optical observations, investigators use ruthenium red (RR)

and alcian blue (AB), which interact with acidic mucopolysaccharides (Smirnova

et al. 2009).

Biofilms on nontransparent materials are visualized by epifluorescence micros-

copy. In the Luft method of EPS visualization by transmission electron microscopy

(TEM) of biofilms, RR interacts with osmium tetroxide, which forms part of the

fixative (Luft 1971). The external PSs of a range of bacteria have been

demonstrated with RR and AB (Karlyshev et al. 2001; Hunter and Beveridge

2005). Beveridge (2006) suggested the use of cryoTEM to explore the native

hydrated structures of the biofilm.

With accumulation of data on the occurrence and role of biofilms in natural

processes, industry, and medicine, the need arose to look for new research methods.

With the help of confocal laser scanning microscopy (CLSM), it became possible to

directly observe native films. More specifically, the use of CLSM and luminescent

dyes allows one to distinguish, within a biofilm, the bacteria selectively stained with

propidium iodide and matrix PSs that bind to the FITC-conjugated lectin ConA

(Kania et al. 2007). For analysis of biofilm composition, investigators employ

fluorochrome-conjugated lectins of different specificities. For example, visualiza-

tion of P. polymyxa through FITC-labeled antibodies has demonstrated that this

bacterium can colonize the surface of roots (Bent et al. 2002) and can penetrate the

root interior (Shishido et al. 1999). Timmusk et al. (2005), using fluorescence

stereomicroscopy, examined the localization of P. polymyxa and the formation of

biofilms on plant roots in a model and a soil system.
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For cell visualization, a labeling method is currently used in which a DNA

sequence is inserted into the bacterial chromosome through the agency of a plasmid

vector. The DNA sequence codes for a fluorescent label, e.g., green fluorescence

protein (GFP). It is possible to conduct a direct real-time observation in vivo of

GFR expression in individual cells of cell populations (Zogaj et al. 2001; Santaella

et al. 2008).

Recently, atomic force microscopy (AFM) has been applied to studying the

components of the metabolites of biofilm-forming bacteria (Hinterdorfer and

Dufrêne 2006). By AFM, Jonas et al. (2007) examined the colonies and biofilms

of Salmonella strains that synthesize cellulose and the surface protein BapA and

that form curli pili. For example, AFM imaging and force measurement studies

have been performed on surface PSs of Lactobacillus sp. Lecithin-modified tips

were used to examine individual PS molecules on the surface of biofilms (Francius

et al. 2008). For understanding their function in biofilms, PSs were characterized by

single-molecule force spectroscopy (Sletmoen et al. 2003). Glucans of Streptococ-
cus mutans biofilms were characterized, and their possible role in biofilm formation

was explored (Cross et al. 2007). The study was conducted with various mutants

with an impaired ability to synthesize glucans. The technique also provides the

possibility for microbial surface molecular recognition by using specific binding

such as antibody–antigen interaction.

17.3.3.3 Extracellular Matrix

Usually, cells in biofilms are embedded in an extrapolymeric matrix that ensures

biofilm stability and safety from external stresses (Costerton et al. 1995; Smirnova

et al. 2010). The matrix is formed from a mixture of components, including EPSs,

proteins, nucleic acids (Voloshin et al. 2005), glycosyl phosphate-containing

biopolymers (e.g., teichoic acids), glycoproteins, and (in certain bacteria, e.g.,

bacilli) polyglutamic acid and other biopolymers (Branda et al. 2006; Safronova

and Botvinko 1998). A key structural component of biofilms, which has received

close attention in the past decade, is the extracellular polymeric substance called the

exopolysaccharide matrix (Sutherland 2001; Verhoef et al. 2005; Smirnova et al.

2010). In different bacterial species, this matrix differs in physical properties and

chemical composition; as a rule, however, it is an anionic polymer. The EPS of the

matrix consists mostly of homo- and heteropolysaccharides. The EPS is composed

of uronic (mainly glucuronic) acids and amino sugars. By now, the EPS composi-

tion of several bacteria has been identified (Cunha et al. 2004; Da Re and Ghigo

2006; Hentzer et al. 2001; Ledeboer and Jones 2005).

For example, it has been shown that Pseudomonas aeruginosa forms alginate, a

copolymer of mannuronic and glucuronic acids (Hentzer et al. 2001). It is an

unbranched PS, a property distinguishing it from polymers such as xanthan and

dextran. However, several recent reports have shown that other PSs contribute to

biofilms formed by nonmucoid P. aeruginosa strains, which are believed to be the

first to colonize cystic fibrosis patients. A recent example is the expression of the psl
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operon, which is required in order to maintain the biofilm structure after attach-

ment. Overproduction of the Psl PS led to enhanced cell surface and intercellular

adhesion of P. aeruginosa, which translated into significant changes in the archi-

tecture of the biofilm (Ma et al. 2006).

Branda et al. (2006) discussed the role of PS, proteins, and the extracellular

polymer polyglutamic acid as components of the B. subtilis matrix. Using micro-

scopical methods, they showed that mutants in the eps and tasA genes form a weak

unstructured film and that double mutants in these genes do not form a film at all.

This attests to the need for the presence of both PS and protein in the matrix.

More specifically, Smirnova et al. (2009) found by cytochemical studies that the

matrix of biofilms developed by Salmonella typhimurium includes acidic

mucopolysaccharides, revealed by alcian blue staining, and cellulose, stained

with Congo red. Sheludko et al. (2008) compared the thickness and antigenic

properties of biofilms produced by A. brasilense Sp245 and its mutants deficient

in the synthesis of LPSs and calcofluor-binding PSs (CBPSs) at the interface

between water and hydrophilic or hydrophobic solid surfaces. They found that

the mutants deficient in acidic LpsI synthesis produce thicker biofilms on hydro-

philic surfaces. Biofilms produced on hydrophobic surfaces by bacteria that are

unable to synthesize CBPSs are less pronounced. Defects in CBPS production in

Azospirillum mutants with impaired flagellar motility can cause adverse effects on

the cell ability to attach to hydrophobic and hydrophilic surfaces. The loss of the

neutral LpsII antigen by the mutants capable of producing CBPSs does not affect

their behavior on hydrophobic surfaces, which is probably due to the compensatory

increase in the total PS production. The fundamental change in the Lps structure

correlates with the activation of biofilm formation by the relevant mutants on

hydrophilic and hydrophobic surfaces. The effectiveness of biofilm formation by

A. brasilense Sp7 and its variants was analyzed by Petrova et al. (2010). Those

authors reported that spontaneous changes in plasmid composition had a negative

effect on biofilm formation by A. brasilense on hydrophobic and (more rarely)

hydrophilic abiotic surfaces. The derivatives of Sp7 that had lost p115 and harbored

an altered pRhico were less active in colonizing plant roots during the first hours of

interaction.

Yegorenkova et al. (2010) evaluated the ability of several strains of the

rhizobacterium P. polymyxa, differing in the yield and rheological properties of

their EPSs, to form biofilms on abiotic surfaces. Of these strains, P. polymyxa 1465,
giving the highest yield of EPSs and the highest kinematic viscosity of the culture

liquid and of aqueous PS solutions, proved to be the most active in forming biofilms

on hydrophobic and hydrophilic surfaces (Fig. 17.2). Enzyme-linked immunosor-

bent assay (ELISA) with rabbit polyclonal antibodies developed to isolated EPSs of

P. polymyxa 1465 and 92 was used to detect P. polymyxa’s polysaccharidic

determinants in the composition of the biofilm materials. According to the data of

Timmusk et al. (2005), the EPSs of P. polymyxa participate in biofilm formation on

the roots of Arabidopsis thaliana.
Santaella et al. (2008) focused on the function of an EPS produced by Rhizobium

sp. YAS34 in the colonization and biofilm formation on nonlegume plant roots
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(Arabidopsis thaliana and Brassica napus). Using random transposon mutagenesis,

they isolated an EPS-deficient mutant of strain YAS34 impaired in a glycosyl-

transferase gene (gta). The wild-type and mutant strains were tagged with a

plasmid-borne GFP, and for the first time, the EPS produced by the wild-type strain

was seen in the rhizosphere by using selective carbohydrate probing with a fluores-

cent lectin and confocal laser scanning microscopy. The authors observed for the

first time that Rhizobium forms biofilms on the roots of nonlegumes, independently

of the EPS synthesis. When produced by wild-type strain YAS34, EPS is targeted at

specific parts of the plant root system. Nutrient fluctuations, root exudates, and the

bacterial growth phase can account for such a production pattern. The EPS synthe-

sis in Rhizobium sp. YAS34 is not essential for biofilm formation on roots, but it is

critical to colonization of the basal part of the root system and to increasing of the

stability of root-adhering soil. The authors believe that in the interactions of

Rhizobium sp. YAS34 with the nonlegume plants, microbial EPS is implicated in

the root–soil interface, root colonization, but not in biofilm formation.

Growth and EPS production may be more prolific under attached conditions for

some bacteria (Hughes 1997), and attachment to solid surfaces may stimulate PS

synthesis, as suggested by Vandevivere and Kirchman (1993). Also, Allison and

Sutherland (1987) demonstrated that two strains of freshwater bacteria synthesized

significant amounts of EPS only after attachment, indicating that the polymers were

not needed for initial adhesion to inert surfaces. These results may again all stem

from stress responses. It is possible that even relatively small quantities of

preformed EPS from the planktonic cells assisted in adhesion either to the solid

surface or to the conditioning film on it. A recent report on colanic acid synthesis in

Fig. 17.2 Evaluation of the ability of P. polymyxa 92, 1460, and 1465 to form biofilms on

hydrophilic and hydrophobic surfaces by using crystal violet staining. А570 is the absorbance of

samples in polystyrene plates, andА590 is the absorbance of samples in glass test tubes (taken from

Yegorenkova et al. 2011)

422 I.V. Yegorenkova



K12 confirmed these results and also indicated that the PS is required for the

formation of the biofilm structure rather than for initial attachment (Danese et al.

2000).

When biofilms or flocs are established, the PS components of microbial origin

may exhibit phenotypic differences from planktonic bacteria of the same species.

However, it is more likely that the microorganisms secrete EPSs identical in

composition and probably also in physical properties with those formed by the

same bacteria when grown in planktonic culture. Another possibility is that the

polymers formed may be of identical composition to those formed by the free-living

bacteria, but, owing to minor structural differences such as the degree of acylation

or the molecular mass, they differ in their physical properties. These differences

may result in altered viscosity or gel-forming capacity (Sutherland 2001). Costerton

et al. (1981) used antibodies against polymers synthesized planktonically to reveal

interaction with material in a biofilm matrix. This indicated that at least some of the

biofilm EPSs had the same or very similar composition as the planktonic products.

Further confirmation of the close similarity or identity of biofilm and planktonic

PSs was obtained with highly specific, phage-induced polysaccharases (Hughes

et al. 1998). On the other hand, if only very small amounts of one polymer are

produced and are impossible to separate from large quantities of a second PS, this

might explain the apparent complexity of composition reported for some materials

obtained from biofilm isolates (Sutherland 2001).

Possibly, EPSs play various roles (depending on the environmental conditions)

in the structure and functions of biofilm communities (Ilyina et al. 2004). Produc-

tion of EPSs is generally important in biofilm formation, and likewise, it can affect

the interaction of microbes with roots and root appendages (Bianciotto et al. 2001).

EPSs protect the biofilm against a range of unfavorable environmental effects (UV

radiation, changes in the pH of the medium, osmotic shock, and drying), adsorb

xenobiotics, promote the mechanisms of nutrient accumulation, and ensure toler-

ance for antimicrobial agents by limiting the penetration of these agents from the

surrounding milieu (Smirnova et al. 2010). For example, water retention varies with

the type of PSs, but EPS water retention capacity may exceed 70 g of water per g of

PS (Zhang et al. 1998; Vu et al. 2009). Further detail on the EPSs of biofilms and on

their structure and functions is available in a review by Sutherland (2001).

The role of the matrix in the formation of polymicrobial biofilms was established

(Smirnova et al. 2010). In mixed bacterial populations, the formation of

coaggregates is commonly observed, which occurs owing to the cells being stuck

together through EPS. On the one hand, coaggregation is conducive to the forma-

tion of mixed biofilms, bringing together various microorganisms on the basis of

synergism, and on the other hand, it may “cleanse” the surroundings of pathogenic

bacteria during their interaction with antagonistic bacteria (Smirnova et al. 2010).
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17.3.3.4 Role of Biofilm in the Biocontrol of Plant Diseases

The use of microorganisms for plant disease control is an attractive alternative to

the use of synthetic chemical substances. There is a vast literature describing

various mechanisms of the biocontrol ability of bacteria, e.g., siderophore produc-

tion, secretion of hydrolytic enzymes, antibiosis, ISR, and certain others (Timmusk

et al. 1999, 2005; Weller et al. 2002; Timmusk 2003; Perneel et al. 2007; Rezzonico

et al. 2007; Tran et al. 2007). The biocontrol ability of bacilli has been adequately

covered by Kumar et al. (2011). In this section, I will only touch on the possible role

of biofilm in the biocontrol of plant diseases.

Bacterial biofilms formed on the roots of plants can protect colonization sites

and act as scavengers of nutrients in the rhizosphere, thereby decreasing the

availability of root exudate nutrients for stimulation of plant pathogens and

subsequent root colonization by them. The mechanism initially reported by

Thomashow’s group (Weller and Thomashow 1994) has gained less attention,

most likely because of difficulties in studying natural systems. However, biofilms

can have the potential to be successful in fighting similar root-colonizing pathogens

under natural conditions (Timmusk et al. 2009b).

One beneficial rhizobacterium is Bacillus subtilis, which is ubiquitous in soil. It

can promote plant growth, protect plants against fungal pathogen attack, and play a

role in the degradation of organic polymers in soil (Emmert and Handelsman 1999).

Recently, it has been reported that B. subtilis forms adhering biofilms on inert

surfaces under the control of a variety of transcription factors (Stanley et al. 2003).

Bais et al. (2004), using an infection model, demonstrated the biocontrol ability of a

wild-type B. subtilis strain, 6051, against P. syringae. Arabidopsis root surfaces

treated with B. subtilis were analyzed by CLSM to reveal a three-dimensional

B. subtilis biofilm.

Owing to its broad host range and its ability to form endospores and synthesize

various types of antibiotics, P. polymyxa has the potential of being a commercially

useful biocontrol agent. P. polymyxa was found to be successful in controlling

Botrytis cinerea, the causal agent of gray mold, in strawberries (Helbig 2001);

Fusarium oxysporum and Pythium spp., the causal agents of seedling blight, wilt,

and root rot of cucumber and watermelon (Dijksterhuis et al. 1999; Yang et al.

2004); sesame damping-off (Ryu et al. 2006); and diseases of Arabidopsis caused
by Phytophthora palmivora and Pythium aphanidermatum (Timmusk and Wagner

1999). This can occur by direct antagonism, when protective bacteria and attacking

organisms are in close proximity, in which case disease suppression is expected to

be restricted to soilborne pathogens. On the other hand, PGPR may stimulate

systemic defenses, inducing sustained changes in the plant, which increase its

tolerance to further infection by foliar or root pathogens (Timmusk 2003).

So far, most research on the biocontrol activity of P. polymyxa has centered on

the elaboration of antibiotics by this bacterium. Haggag and Timmusk (2008)

investigated the role of biofilm-forming P. polymyxa strains in controlling crown

root rot disease (A. niger) and highlighted the importance of efficient rhizosphere
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colonization and biofilm formation in biocontrol. Two plant-growth-promoting

P. polymyxa strains were isolated from the peanut rhizosphere (from A. niger-
suppressive soils). The strains were tested under greenhouse and field conditions

for inhibition of the crown root rot pathogen of the peanut, as well as for biofilm

formation in the peanut rhizosphere. The strains’ colonization and biofilm forma-

tion were further studied on roots of the model plant A. thaliana and with solid

surface assays. Their crown root rot inhibition performance was studied in field and

pot experiments. The strains’ ability to form biofilms in gnotobiotic and soil

systems was studied by SEM. It was noted that both strains produced similar

amounts of antagonistic substances and were able to suppress the pathogen but

that the superior biofilm former offered significantly better protection against

crown rot.

Oomycetic pathogens are responsible for one of the most destructive groups of

diseases. They are present in almost all cultivated soils and attack the root system,

particularly in warm and humid environments. Despite the decades of biological

control research, no commercially successful methods for combating diseases

caused by Pythium and Phytophthora have yet appeared. Timmusk (2003) observed

a significant yet inconsistent reduction in Pythium root rot under natural conditions,

when the plants were preinoculated by P. polymyxa biocontrol strains. Subse-

quently, Timmusk et al. (2009b) presented experiments with an A. thaliana
model system, in which they studied the antagonistic properties of P. polymyxa
strains toward the oomycete plant pathogens P. palmivora and P. aphanidermatum.
The experiments were conducted on agar plates, in liquid media, and in soil. It was

shown that P. polymyxa strains significantly reduced P. aphanidermatum and

P. palmivora colonization in liquid assays. Most plants that had been treated with

P. polymyxa survived the P. aphanidermatum inoculations in soil assays. In the

authors’ opinion, the antagonistic abilities of both systems correlated well with

mycoidal substance production and not with the production of antagonistic

substances from the biocontrol bacteria. Possibly, the P. polymyxa biofilm formed

on the roots coincides with the colonization sites of several pathogens and thereby

functions as a protective layer to prevent access by the pathogens (Timmusk et al.

2005). The protective layer might also contribute to plant-enhanced drought toler-

ance (Timmusk and Wagner 1999).

Thus, given the information available to date, one can confidently speak of the

substantial role of the biofilm in plant defense against pathogens.

Once the pathways to biofilm development are more fully understood, the

management of P. polymyxa biofilm formation in resident populations of cropping

systems could become possible (Battin et al. 2007). This will be a step to ensuring

their reproducible performance in natural environments.
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17.4 Concluding Remarks

In this chapter, I have analyzed what is currently known about the EPSs of

P. polymyxa rhizobacteria, with an emphasis on their role in plant–bacterial

interactions. In the past few years, great strides have been made toward elucidating

the physiological role of microbial EPSs, and the ecological significance of these

polymers has been proven. The involvement of exoglycans in the formation of

symbiotic communities and their large role in preserving population viability under

extreme conditions are beyond question. PSs constitute an extremely important

category of biopolymers with a wide range of biological functions, first and

foremost receptor functions, which ensure the interaction of cells with one another

and with members of other species. However, for a fuller understanding of the

physiological significance of these polymers, it is necessary to elucidate the possi-

bility of a change in their functions that is adequate to external influence.

One of the keys to studying complex biological systems is the development of

accurate and realistic models for natural communities in laboratory settings and the

application of state-of-the-art research methods that adequately reflect the pro-

cesses occurring under natural conditions. In the rhizosphere, P. polymyxa bacteria

operate together with plant roots as communities with increased levels of complex-

ity and plasticity, allowing this system to adapt to the environmental conditions.

Within the framework of the concept of symbiogenetics, being developed currently

(Tikhonovich and Provorov 2003), symbioses are regarded as biological complexes

arising from the functioning (and sometimes the structural integration) of the gene

systems of unallied organisms. Owing to the work of the newly formed

“supraorganismal” genome, the partners implement new programs of development

and adaptation, which are unavailable to free-living organisms (Provorov et al.

2008).

The negative effects of some P. polymyxa strains (e.g., root invasion) appear to

be mostly strain specific and negligible, as compared with beneficial effects (e.g.,

growth promotion and pathogen control). Interaction of a bacterial strain with a host

plant as a PGPR or a DRB is strongly dependent on the prevalent rhizosphere

environment conditions. In any case, the role of P. polymyxa in the rhizosphere

microbial community requires further studies, also because there is every reason to

believe that gaining a greater understanding of these processes will facilitate in the

long run the efforts to wean off the dependence on agricultural chemicals (Raza

et al. 2008).
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York GM, González JE, Walker GC (1996) Exopolysaccharides and their role in nodule invasion.

In: Stacey G, Mullin B, Gresshoff PM (eds) Biology of molecular plant-microbe interactions.

International Society for Molecular Plant-Microbe Interactions, St. Paul, MN, pp 325–330

Zamudio M, Bastarrachea F (1994) Adhesiveness and root hair deformation capacity of

Azospirillum strains for wheat seedlings. Soil Biol Biochem 26:791–797

Zanchetta P, Lagarde N, Guezennec J (2003) A new bone-healing material: a hyaluronic acid-like

bacterial exopolysaccharide. Calcif Tissue Int 72:74–79

Zengguo H, Duygu K, Liwen Z, Chunhua Y, Kari BG-C, Ahmed EY (2007) Isolation and

identification of a Paenibacillus polymyxa strain that coproduces a novel lantibiotic and

polymyxin. J Appl Environ Microbiol 73:168–178

Zhang XQ, Bishop PL, Kupferle MJ (1998) Measurement of polysaccharides and proteins in

biofilm extracellular polymers. Water Sci Technol 37:345–348

Zherebtsov NA, Abramova IN, Shelamova SA, Popova TN (2003) Identification of catalytically

active groups in inulinase from Bacillus polymyxa 722. Appl Biochem Microbiol 39:544–548
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Chapter 18

Interactions in Rhizosphere for Bioremediation

of Heavy Metals

Thounaojam Nevita, Piyush Pandey, Dinesh Kumar Maheshwari,

and Anchal Sood

18.1 Introduction

Emphasis on economic growth and industrial activities at the global level has

resulted in accumulation of heavy metals in soil. Metals such as lead, copper,

cobalt, mercury, cadmium, nickel, selenium and zinc are the most common

contaminants of soil. These metals reach the fertile layers of soil through industrial

effluents and adversely affect the vegetation. Due to the physiological activities of

plants and/or microorganisms associated with root surfaces, the roots of plants

growing in soil contaminated with heavy metals have the ability to increase the

solubility of metals and may change their speciation, including alteration of the

redox potential, exudation of metal chelants and organic ligands and acidification/

alkalinization (Glick 1995; Barea et al. 2002; Yang et al. 2009).

Rhizosphere microorganisms, which are closely associated with roots, have been

termed plant growth-promoting rhizobacteria (PGPR). These bacteria are capable

of promoting plant growth by colonizing the plant root (Moulin et al. 2001). Soil

microorganisms play an important role in management of heavy metal contamina-

tion because of their ability to increase solubility and change the speciation of

metals through the production of organic ligands and release of metabolites like

siderophores and organic acids that complex cationic metals or desorbed anionic

species by ligand exchange (Hallberg and Johnson 2005). An extension of PGPR

technology is the emerging use of these bacteria with plants for environmental
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applications. Recent studies in this area include many different uses: growth

promotion of soil-stabilizing plants; to counteract flooding stress in plants; aid

plant growth in acidic conditions; counter high temperature stress; and the use of

PGPR in phytoremediation technologies. Thus, adding PGPR can aid plant growth.

This paper focuses on the importance of the rhizosphere for the bioremediation of

heavy metals present in the soil and its role in improving plant growth, with

discussions on the interaction of microorganisms in the rhizosphere.

18.2 Interactions in the Rhizosphere: Root Exudate and

Rhizobacteria

The term “rhizosphere effect” was first described by Hiltner (1904). Due to the

nutrients exuded by plant roots, many microorganisms increase in number near the

plant roots and provide a carbon-rich environment. The plant roots and microbes

initiate colonization by producing and exchanging chemical signals. This process

has been described by several authors in detail (Lugtenberg et al. 2001, 2002;

de Weert et al. 2002; Bais et al. 2004a, b). The term “rhizosphere” refers to the

region of high microbial activity in the soil surrounding the roots, which is

influenced by root exudation that affects the microbial communities (Kent and

Triplett 2002). Because of the associated microorganisms, the rhizosphere plays a

crucial role in the formation and modification of soil (Pate et al. 2001; Pate and

Verboom 2009; Taylor et al. 2009) and therefore holds strong potential to overcome

heavy metal contamination. In fact, soil microorganisms support bioremediation by

using the green or terrestrial plant for cleaning up the hazardous chemicals present

in the environment, which is now an emerging technology (Chaney 1983; Baker

et al. 1991; Salt et al. 1995).

In addition to its role in mineral acquisition, root exudates have the potential to

contribute to the bioremediation of heavy metals. There are several reports that

describe the ability of various plant species to accumulate and release heavy metals

as volatile root exudates, thus reducing their concentrations in the soil environment

(Mench and Martin 1991; Terry et al. 1992; Banuelos et al. 1993; Nanda Kumar

et al. 1995; Zayed et al. 1998). Plant roots exude a large number of compounds into

the rhizosphere. In the rhizosphere, some complex chemical, physical and

biological interactions occur between roots and the soil. The interactions between

the roots and soil include root–root, root–insects and root–microbe interactions and

therefore various steps have been taken to understand the types of interaction

(Hirsch et al. 2003). The rhizosphere is highly dynamic because of the interactions

occurring between roots, pathogenic soil microbes and invertebrates (Hirsch et al.

2003).

Symbiotic associations, mycorrhizal fungi and root colonization by bacteria and

plant growth-promoting bacteria are all positive interactions. Negative interactions

include competition or parasitism in plants, pathogenesis in bacteria or fungi and
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invertebrate herbivory (Bais et al. 2006). It is suggested that the root exudates have

a major role in determining the outcome of interactions by producing and secreting

compounds into the rhizosphere (Gleba et al. 1999; Bais et al. 2001). The secretions

include ions, free oxygen and water, enzymes, mucilage and carbon-containing

primary and secondary metabolites (Uren 2000; Bertin et al. 2003) in addition to

organic ligands (e.g. carbohydrates, organic acids, humic acids, polypeptides,

proteins, amino acids, nucleic acids, etc.) and inorganic ligands (e.g. chloride,

sulfate, ammonium, phosphate, carbonate etc.). These substances are utilized as

the energy source of microorganisms and also function as ligands to be chelated

with heavy metal ions. Organic acids released from roots are able to reduce toxicity

from heavy metals in soils. Malate, citrate and oxalate have the most dramatic

effect due to their implication in the complexation of metals (Hinsinger 2001).

Specific organic acids can sequester heavy metals and protect the plants from their

toxic effects (Jones et al. 2003; Jung et al. 2003; Liao and Xie 2004; Schwab et al.

2005).

Root exudation is classified into two active processes, excretion and secretion.

Excretion involves gradient-dependent output of waste materials with unknown

functions and secretion involves exudation of compounds with known functions,

such as lubrication and defence (Uren 2000; Bais et al. 2004a, b). The root exudates

are also grouped into two classes, low and high molecular weight exudates. Low

molecular weight exudates include amino acids, sugars, phenolics and other sec-

ondary metabolites; and high molecular weight exudates include mucilage and

proteins (Hawes et al. 2000; Vicre et al. 2005). Root exudates have been reported

to precipitate heavy metal ions outside the roots by absorbing and binding to them.

Cd combined as a complex with oxides of Fe and Mn and with some organic acids

was accumulated in rice rhizosphere much more than in non-rhizosphere soil (Lin

et al. 1998). Also, root exudates from wheat and rice plants stressed with Pb and Cd

heavy metals were found to have a different composition to those from plants not

treated with Cd and/or Pb (Lin et al. 2003), as shown by analysis using a capillary

electrophoretic method. Equilibrium dialysis demonstrated that root exudates

bound metals to an extent that depended on the metal involved; for wheat exudates,

the importance of the binding followed the order Pb > Cd. Hence, root exudates

can influence Cd and Pb absorption and distribution in plants (Dong et al. 2007).

Also, in a different study, it was reported that the Ni-chelating histidine and citrate

accumulate in the root exudates of non-hyperaccumulating plants and thus could

help to reduce Ni uptake and so play a role in a Ni-detoxification strategy (Salt et al.

2000). Buckwheat secretes oxalic acid from the roots in response Al stress and

accumulates nontoxic aluminium oxalate in leaves and, thus, detoxification occurs

both externally and internally (Ma et al. 1997).

Plant–microbe interactions positively influence plant growth through various

mechanisms such as atmospheric nitrogen fixation, biotic and abiotic stress toler-

ance and, directly and indirectly, through PGPR (Moulin et al. 2001; Schardl et al.

2004; Gray and Smith 2005). The bacteria can interact positively with plants by

secreting biofilms or antibiotics against potential pathogens as a biocontrol (Bais

et al. 2004a, b) or by degrading plant–microbe products that might act

18 Interactions in Rhizosphere for Bioremediation of Heavy Metals 441



allelopathically or autotoxically in soil. However, the rhizosphere bacteria can also

affect plant health and survival through pathogen or parasite infection, but the

chemical signals secreted both from plants and microbes help to determine whether

the interaction is to be stopped or started. Root colonization thus plays a very

crucial role in plant and microbe interaction.

18.3 Bioremediation of Heavy Metals

Heavy metals are elements with metallic properties (conductivity, stability as

cations, ligand specificity, etc.) and with atomic number >20. The most common

heavy metals are Cd, Cr, Cu, Hg, Pb and Ni. The soil contains large amounts of

metals, which occur naturally and are required by plants as micronutrients. Heavy

metals have a specific gravity five times the specific gravity of water (which is 1 at

4 �C). Small amounts of elements are present in our environment and diet and are

essential for good health, but large amounts may cause acute or chronic toxicity

(Chabot et al. 1996; Glanze 1996). The heavy metals cannot be degraded easily, not

even by biological processes. They can be transformed from an organic state or

organic complex to another organic state and because of this degradation of heavy

metals in soils is very difficult (Garbisu and Alkorta 2001). Pollution by heavy

metals decreases soil microbial activity and crop production and is becoming a

severe threat to environmental and human health. When the heavy metals are at an

elevated level, they are absorbed by plant roots and transferred to shoots, which

results in impaired and reduced growth due to excess accumulation of heavy metals

(Foy et al. 1978; Bingham et al. 1986). Different methods have been applied for the

degradation of heavy metals (thermal treatment, acid leaching etc.) but they are

very costly and also cause destruction of the soil and its fertility. Therefore, the

method of phytoremediation for heavy metals is important (Chaney et al. 2000;

Cheng et al. 2002; Lasat 2002).

The roots of plants play a very important role because they interact with huge

numbers of microorganisms for the degradation of heavy metals, and these

interactions lead to their major role in phytoremediation (Glick 1995). The interac-

tion of plants and bacteria with heavy metals affects both the plant and the bacteria.

The microbes present in the soil help in recycling plant nutrients, soil and detoxifi-

cation of noxious chemicals, and also support plant growth (Elsgaard et al. 2001;

Filip 2002). The plant and bacteria form both specific and nonspecific kinds of

association: first, the plant provides a carbon source to bacteria, which helps the

bacteria to decrease the phytotoxicity of the contaminated soil; and second, the

plant stimulates the microbial community, which supports the metabolic degrada-

tion of contaminated soil.

Rhizobacteria have the ability to alter the bioavailability of heavy metals in the

soil (McGrath et al. 2001; Whiting et al. 2001; Lasat 2002) by releasing chelating

substances, acidification of the microbial community and changing the redox

potential (Smith and Read 1997). Abou-Shanab et al. (2003) have reported that
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the uptake of Ni by the plant increases when added with Sphingomonas
macrogoltabidus, Microbacterium liquefaciens, Microbacterium arabinogalacta-
nolyticum and Alyssum murale as compared with the un-inoculated plant.

18.4 Role of Plants in the Bioremediation of Heavy Metals

The heavy metals are highly reactive at higher oxidation states and therefore highly

toxic for plant cells because they react with biomolecules at both the cellular and

molecular level. This results in alteration of different plant physiology processes

through inactivation and denaturation of enzymes and proteins, blocking of func-

tional groups of metabolically important molecules and functional cellular units,

conformational modifications and disruption of membrane integrity (Ramesh 2008;

Villiers et al. 2011). The devastating effects of heavy metals may include modified

plant metabolism such as inhibition of photosynthesis, respiration and activities of

various enzymes (Sharma and Dubey 2007; Hossain et al. 2009, 2010, 2012a;

Sharma and Dietz 2009; Hossain and Fujita 2009, 2011; Tan et al. 2010; Dubey

2011). Further, heavy metals are also known to disturb the redox homeostasis by

creating free radicals and reactive oxygen species (ROS) such as singlet oxygen

(1O2), superoxide radicals (O2
•�), hydrogen peroxide (H2O2) and hydroxyl radicals

(•OH) (Sharma and Dietz 2009; Hossain et al. 2010; Dubey 2011; Anjum et al.

2012).

An increase in ROS and methylglyoxal in cells leads to oxidative stress that

leads to lipid peroxidation, membrane dismantling, ion leakage and DNA strand

cleavage, which leads to plant death (Navari-Izzo 1998; Romero-Puertas et al.

2002; Hossain et al. 2010; Barconi et al. 2011; Rascio and Navari-Izzo 2011). To

survive, the plants need a combination of both physiological and biochemical

processes, which also require a change in global gene expression and various

strategies to cope with the toxic effects of heavy metals. To survive, plants first

need “avoidance” to reduce the heavy metals entering the cells through extracellu-

lar precipitation, biosorption, uptake or increased efflux. In addition, heavy metals

that do enter the cells are chelated intercellularly within the vacuole compartments

and by the production of amino acids, organics acids and metallothioneins,

phytochelatins and by regulation of the antioxidant defence and glyoxalase system

to removed the deleterious effects caused by ROS and MG (Leyval et al. 1997;

Cobbett 2000; Hall 2002; Yang et al. 2005; Clemens 2006; Singla-Pareek et al.

2006; Hossain et al. 2009, 2010; Yadav 2010; Seth et al. 2012). Plant-based

bioremediation technologies have been collectively termed “phytoremediation”,

which can be divided into the following categories (Ghosh and Singh 2005):

(a) Rhizofiltration is defined as the use of plants to absorb, concentrate and

precipitate contaminants from polluted aqueous sources, with low contaminant
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concentration in their roots. Plants like the sunflower have been reported for their

ability to remove lead from effluent. Rhizofiltration has been used for lead, cad-

mium, copper, nickel, zinc and chromium, which are primarily retained within the

roots (Chaudhry et al. 1998).

(b) Phytostabilization includes the sorption, precipitation or reduction of metal

valence. The plants decrease the amount of water percolating through the soil. This

process is the ability of roots to limit contaminant mobility and bioavailability in

the soil and is mostly used for the remediation of soil, sediment and sludge (Mueller

et al. 1999).

(c) Phytoextraction or phytoaccumulation is the process whereby plants absorb,

concentrate and precipitate toxic metals as biomass from contaminated soils. It is

the best approach for removing the contamination from soil without destroying the

soil structure and fertility.

(d) Phytovolatilization involves the uptake of contaminants by the plants from

soil, transforming them into volatile form and transpiring them into the atmosphere.

Removal of mercury by this process had been reported; however, mercury released

into the atmosphere is expected to be recycled by precipitation and then redeposited

back into ecosystem (Henry 2000). Some plants grown in high selenium media

were found to produce volatile selenium in the form of dimethylselenide and

dimethyldiselenide (Banuelos 2000).

(e) Phytodegradation is the metabolic breakdown of organics to simple products

that are incorporated into the plant tissues (Chaudhry et al. 1998). Plants contain

enzymes that can break down and convert ammunition wastes, chlorinated solvents

such as trichloroethylene and other herbicides. The enzymes are usually

dehalogenases, oxygenases and reductases (Black 1995). Rhizodegradation is the

breakdown of organics in the soil through microbial activity of the rhizosphere.

Further, the rhizobacteria in association with the plant provide efficiency to the

process of phytoremediation (Whiting et al. 2001; Abou-Shanab et al. 2003). Giller

et al. (1998) reported that in a metal-polluted soil environment, the microbial

diversity and activities are affected. Kumar et al. (1995) concluded that the plants

of the Brassicaceae family have very high ability to accumulate heavy metals,

although such plants have a slow growth rate and produce limited biomass when the

soil is highly contaminated. Some workers have recommended a Brassica
juncea–PGPR association as one of the most effective measures for bioremediation

of heavy metals (Wenzel et al. 1999; Glick 2003) because B. juncea accumulates

less metal yet shows high growth rates.

The toxic effect of heavy metals on plant tissues and the physiological mecha-

nism of heavy metal tolerance in plants is not discussed here in detail, although it

has been explained in several excellent reviews (Marques et al. 2009; Manara 2010;

Hossain et al. 2012b).
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18.5 Response of Bacteria to Heavy Metal Contamination

Microorganisms require some metals ions like iron, zinc, copper and manganese as

micronutrients, yet metals such as zinc and copper are toxic at high concentrations.

Bacteria utilize a variety of resistance mechanisms to protect themselves from toxic

concentrations of metals, including permeability barriers, intra- and extracellular

sequestration, efflux pumps, enzymatic detoxification and reduction (Nies 1999).

The presence of heavy metals at high concentration has great effects on the

microbial communities in soils in several ways: (1) it may lead to a reduction of

total microbial biomass (Giller et al. 1998), (2) it lowers numbers of specific

populations (Chaudri et al. 1993) and (3) it may change microbial community

structure (Gray and Smith 2005). Thus, at high concentrations, metal ions can

either completely inhibit the microbial population by inhibiting their various

metabolic activities or organisms develop resistance or tolerance to the elevated

levels of metals. To have a toxic effect, heavy metal ions must first enter the cell and

do so via uptake mechanisms that exist because some heavy metals are necessary

for enzymatic functions and bacterial growth. Generally there are two uptake

systems, quick and unspecific. The quick system is driven by a chemiosmotic

gradient across the cell membrane and thus requires no ATP. The other system is

slower and more substrate-specific, driven by energy from ATP hydrolysis. Influx

of a wide variety of heavy metals occurs because the mechanism is more efficient.

When these metals are present at high concentrations, they are more likely to have

toxic effects once they are inside the cell (Nies and Silver 1995).

The bacterial resistance mechanisms are encoded generally on plasmids and

transposons, and it is probably by gene transfer or spontaneous mutation that

bacteria acquire their resistance to heavy metals. In Gram-negative bacteria (e.g.

Ralstonia eutropha), the czc system is responsible for the resistance to cadmium,

zinc and cobalt. The czc-genes encode for a cation-proton antiporter (CzcABC),

which exports these metals. A similar mechanism, called the ncc system, has been

found in Alcaligenes xylosoxidans and provides resistance against nickel, cadmium

and cobalt. In contrast, the cadmium resistance mechanism in Gram-positive

bacteria (e.g. Staphylococcus, Bacillus or Listeria) is through Cd-efflux ATPase.

Plasmid-encoded energy-dependent metal efflux systems involving ATPases and

chemiosmotic ion/proton pumps are also reported for arsenic, chromium and

cadmium resistance in other bacteria. The exploitation of these bacterial properties

for the remediation of heavy metal-contaminated sites has been shown to be a

promising bioremediation option (Lloyd and Macaskie 2000). Although the thresh-

old limit of metal toxicity to soil microorganisms is not conclusive, the interaction

between heavy metals and microbes does occur in nature. Microorganisms can

interact with metals through many mechanisms, some of which may be used as the

basis of potential bioremediation strategies.

There are several reviews available that address the molecular mechanism of

heavy metal resistance in bacteria (Summers 1992; Hobman and Brown 1997;

Brown et al. 2003; Barkay et al. 2003; Hobman et al. 2005). Bacterial metal
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resistance systems are regulated by transcriptional factors from the MerR family

(COG0789), ArsR/SmtB family (Wu and Rosen 1993) and by two-component

systems such as CusRS (San Francisco et al. 1990), SilRS (Brown et al. 1995)

and PcoRS (Rouch and Brown 1997). The mechanisms of allosteric coupling of

various metal-dependent regulators have been reviewed by Penella and Giedroc

(2005). Ralstonia sp. has the genetic ability to survive heavy metal concentrations

encoded on a large plasmid, pMOL30, designated as czc for cobalt-cadmium-zinc

resistance (Nies et al. 1987). This system detoxifies the cell by cation efflux: the

three heavy metal cations, which are taken up into the cell by the fast and unspeci-

fied transport system for Mg2+, are actively extruded from the cell by products of

the czc resistance determinants (Nies et al. 1989a, b). Ralstonia also has additional

structural genes cnrCBA for cobalt-nickel resistance (Liesegang et al. 1993) that are

located on another megaplasmid, pMOL28 (Taghavi et al. 1997). Protein families

involved in bacterial heavy metal metabolism are given in Fig. 18.1.

One of the limitations to rhizoremediation of heavy metals is that the most of the

bacteria are unable to survive in near-starvation conditions in the rhizosphere

(Normander et al. 1999). Several methods have been developed to improve the

degradation process and tolerance of bacteria for contaminated soil. In fact, it has

been proposed that specific enzymes should be produced by using genetically

engineered microorganisms for sustainable degradation of toxic organic substances,

which may be preferred over wild-type organisms in contaminated sites. In contrast

to the conventional attributes of wild-type microorganisms, the specially designed

metabolic pathways of genetically engineered bacteria can reduce or eliminate

undesired toxic intermediates (Pieper and Reineke 2000; Furukawa 2003).

18.6 Plant Growth-Promoting Rhizobacteria: Role in Heavy

Metal Degradation

The rhizosphere is known to contain large microbial communities with high

metabolic activity compared to bulk soil (Anderson et al. 1993). The microbial

community affects the mobility and availability of heavy metals to plants by the

release of chelating agents, acidification, phosphate solubilization and redox

changes (Smith and Read 1997; Abou-Shanab et al. 2003). The PGPR in associa-

tion with plants roots provide beneficial effects on plant growth and also provide

nutrition through various mechanisms such as N2 fixation, phytohormone produc-

tion and siderophores and also by transformation of nutrients when they are applied

to seeds or soil (Kloepper et al. 1989; Glick 1995; Glick et al. 1999). In last two

decades, the role of rhizobacteria to enhance phytoremediation of heavy metals has

attracted major interest in the scientific community (de Souza et al. 1999; Whiting

et al. 2001). Apparently, plant–rhizobacteria interaction has the following

advantages over other techniques of heavy metal decontamination in soil: (1) it

preserves the natural properties of soil, (2) it receives energy from sunlight, (3) high
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Fig. 18.1 (a–f) Protein families involved in bacterial heavy metal metabolism. (a) Ni2+ is

accumulated by the fast and unspecific Cor A (metal transport system, MIT) Mg2+ transport

system. Highly specific nickel transporters are either HoxN chemiosmotic transporters or ATP-

binding cassette (ABC) uptake transporters, which use a periplasmic nickel-binding protein

depending on the bacterial species. Characterized nickel resistance systems are based on inducible

resistance–nodulation–cell division (RDN)-driven transenvelope transporters. Moreover, a nickel-

efflux P-type ATPase may exist in Helicobacter pylori. (b) Cu2+ is possibly accumulated by the

CorA Mg2+ transporter and additionally by P-type ATPases under copper starvation (shown in

Enterococcus hirae). The mechanism of resistance systems similar to the Pseudomonas Cop

system is still elusive but, in Gram-positive bacteria, P-type ATPase seems to detoxify copper

via efflux. The copper resistance systems of Pseudomonas type usually encode four proteins

(circles with A, B, C or D), which bind copper in the periplasm or close to the outer membrane.

(c) Zn2+ is accumulated by the fast and unspecific CorA (MIT) Mg2+ system in some bacterial

species, and by the fast and unspecific magnesium transporter (MgtE) system in others. Inducible,

high-affinity ABC transporters supply zinc in times of need. P-type ATPases may transport zinc in

both directions, bringing about its uptake as a byproduct of Mg2+-uptake and its efflux as

detoxification. Slow efflux is catalyzed by the cation-diffusion facilitator (CDF) transporter and
the high-efficiency transenvelope efflux by an inducible RND-driven transporter like Czc.

(d) Arsenate is accumulated by the constitutive, fast and unspecific phosphate inorganic transport

(PIT) and the phosphate inducible phosphate-specific transport (Pst) systems. Inside the cell

arsenate is reduced by ArsC to arsenite, which is removed from the cell by ArsB, either acting

alone or together with the A-type ATPase ArsA. (e) Magnesium (MIT) and/or manganese uptake

systems are responsible for the uptake of Cd2+. Only in cyanobacteria have metallothionein-like

proteins (Smt) been characterized. Efflux is carried out in Gram-positive bacteria by P-type

ATPases; in Gram-negative bacteria it take the form of RND-driven transenvelope transport and
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levels of microbial biomass in the rhizosphere can be achieved, (4) it is low in cost

and (5) it has the potential to be rapid (Huang 2004c).

Initially, the remediation strategy was confined to the use of some plants and has

been used widely in the degradation of heavy metal pollution present in soil.

However, the phytoremediation technology also has drawbacks that lead to low

rates of seed germination, slow rates of plant development and decreases in plant

biomass. These problems can be solved by using selected species of PGPR along

with the host plant (Glick 2003). The term rhizoremediation is the combination of

phytoremediation and bioaugmentation with PGPR (Kuiper et al. 2004). The

addition of PGPR helps in the removal of organic pollutants through an increase

in seed germination and stimulates the plant to grow faster (Huang et al. 2004a, b).

One important trait of PGPR is that they can enhance the remediation process by

subsequent decrease of ethylene stress in plants (Deikman 1997), which is a major

reason for a decrease in plant growth. PGPR consume amino-cyclopropane carbox-

ylic acid (ACC), which is the intermediate to ethylene, through synthesis of

1-amino-cyclopropane-1-carboxylate deaminase (ACC deaminase) that reduces

ethylene production in stressed plants (Hall 1996; Reed and Glick 2005; Safronova

2006). The PGPR also have the ability to solubilize phosphates and provide other

nutrient for an increase in plant growth (Goldstein 1986). They also help in the

suppression of deleterious microorganism growth by the production of

siderophores, β-1,3 glucanases, chitinases and antibiotics (Cattelan et al. 1999).

Also, as explained earlier, it has been established by several workers that the

exudates from roots stimulate bacterial growth by degradation of various

contaminants of soil and thus reduce the toxicity to plants, in addition to providing

nutrients for the plants and alleviating plant stress by preventing synthesis of stress

ethylene (Macek et al. 2000; Hontzeas et al. 2004; Huang et al. 2004b; Chaudhry

et al. 2005).

Belimov et al. (2005) isolated cadmium-tolerant plant growth promoting bacte-

ria, namely Variovorax paradoxus, Rhodococcus sp. and Flavobacterium sp., from

the roots of Indian mustard. These strains were capable of stimulating root elonga-

tion of Indian mustard and were able to tolerate metals including Zn, Ni and

Co. The ACC deaminase activity of these bacteria and their stimulating effect on

root elongation suggests that the utilization of ACC is helpful in determining the

promotion of root growth. In an interesting study, an Escherichia coli gene, ZntA,
which encodes a Pb(II)/Cd(II)/Zn(II) pump, was tested for developing plants with

reduced heavy metal content. Yeast cells transformed with this gene had improved

resistance to Pb(II) and Cd(II). In Arabidopsis plants transformed with ZntA, ZntA

Fig. 18.1 (continued) is possibly carried out by the CDF transporter. (f) For mercury, the

resistance determinant encodes the transport systems. MerT interacts with a periplasmic mer-

cury-binding protein, MerP. Transport by MerC may be in addition to that by MerT or may

substitute for MerT transport, depending on the respective resistance determinant. Inside the cell,

Hg2+ is reduced to metallic mercury, which diffuses out of the cell and its environment (redrawn

from Nies (1999) with permission)
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was localized at the plasma membrane and improved the resistance of the plants to

Pb(II) and Cd(II) (Lee et al. 2003).

Rajkumar et al. (2006) isolated Cr(VI)-resistant PGPR, Pseudomonas sp. Ps 4A
and Bacillus sp. Ba 32 from contaminated soil and studied their effect on Indian

mustard. They reported that the strains protect the plant against the inhibitory effect

of Cr due to the production of indoleacetic acid (IAA), siderophores and solubili-

zation of phosphate. In a different study, chromium-resistant bacteria, namely

Ochrobactrium intermedium and Bacillus cereus, were inoculated on the seeds of

Vigna radiate and it was found that Cr(VI) supplied to the seedling was reduced to

Cr(III) in the rhizosphere by the bacterial strain, thus in turn lowering the toxicity of

chromium to the seedling (Faisal and Hasnain 2006).

Wu et al. (2006b) demonstrated that the expression of metal-binding peptide

(EC20) in a rhizobacterium, Pseudomonas putida 06909, and reported that it not

only improved cadmium binding but also alleviated the cellular toxicity of cad-

mium. In addition, inoculation of sunflower roots with the engineered rhizobacteria

resulted in marked decrease in cadmium phytotoxicity and a 40 % increase in

cadmium accumulation in plant roots. Analysis of the significantly improved

growth characteristics of both the rhizobacterium and plant suggested that the use

of EC20-expressing P. putida endowed with organic degrading capabilities was a

promising strategy for remediation of sites contaminated with both organics and

metals. Bacillus subtilis strain SJ-101 was found to have role in Ni accumulation in

Indian mustard, as it exhibited the capability of producing IAA and solubilizing

inorganic phosphate. Therefore, owing to its intrinsic ability to promote plant

growth and alteration of soil Ni by biosorption or bioaccumulation, it is suggested

that the strain SJ-101 is exploited for bacteria-assisted phytoaccumulation of toxic

Ni from contaminated sites (Zaidi 2006). The role of PGPR for bioremediation of

heavy metals through the plant rhizosphere and their effect on plants is summarized

in Table 18.1.

18.7 Role of Mycorrhiza in Management of Heavy Metal

Contamination in the Rhizosphere

It is well known that mycorrhizal fungi are a major component of the rhizosphere

and form mutualistic associations with most plant species. Mycorrhizal fungi have a

great potential for heavy metal remediation in soil. Mycorrhizal fungi form mutu-

alistic associations with plants and contribute to plant growth by improving uptake

of minerals from soil and, additionally, protect the plant from heavy metal stress in

contaminated soil (Leyval et al. 1997; Perotto and Martino 2001; Ouziad et al.

2005). The fungal symbiont facilitates allocation of heavy metals within the roots

and several mechanisms have been suggested for this process, including binding of

heavy metals on the cell wall and deposition in vacuoles, siderophore-mediated
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uptake and the presence of transporters (Galli et al. 1994; Guo et al. 1996; Leyval

et al. 1997; Schutzendubel and Polle 2002).

Huang et al. (2005a) observed that speciation of Cu, Zn and Pb changed

significantly in the rhizosphere of arbuscular mycorrhiza (AM)-infected and non-

infected maize in comparison to bulk soil. The level of exchangeable Cu increased

by 26 % in non-infected maize whereas a 43 % increase was recorded in the AM-

infected rhizosphere, as compared to bulk soil. Further, an increase in the level of

organic-bound Zn and Pb was also recorded in the rhizosphere in comparison to

bulk soil. However, carbonate and Fe-Mn oxides of Zn and Pb did not exhibit

significant changes. The authors were able to conclude that mycorrhiza protects its

host plants from the phytotoxicity of excessive Cu, Zn and Pb by changing their

speciation from the bioavailable to the non-bioavailable form. However, the role of

AM fungi in the plant stress response is variable when the host is exposed to metal

stress. Some authors have reported reduction in metal concentrations in plants due

to mycorrhizal colonization (Heggo et al. 1990; Jentschke et al. 1998). An exclu-

sion strategy, showing lower Zn accumulation by AMF-colonized Zea mays has

been proposed (Huang et al. 2002). Enhanced growth and metal root-to-stem

translocation in Cannabis sativa plants inoculated with the AM Glomus mosseae
has been reported (Citterio et al. 2005). Similarly, Chen et al. (2005) observed that a

mixed AM inoculum enhanced Pb uptake and growth of Kummerowia striata,
Ixeris denticulate, and Echinochloa crusgalli var mitis, even resulting in metal

levels toxic to plants (Weissenhorn and Leyval 1995).

However, some reports have indicated enhanced uptake and accumulation of

heavy metals in plants due to AM colonization (Ahonen-Jonnarth and Finlay 2001;

Joner and Leyval 2001; Jamal et al. 2002; Marques et al. 2007a). Most of the reports

indicate the possibility of a species-specific effect of AM associations on plant

metal uptake and accumulation. Marques et al. (2007b) have shown that inoculation

with G. intraradices or G. claroideum protected the host plant Solanum nigrum at

high Zn concentration, which was translated into a decrease in metal accumulation

in AM-inoculated plants, whereas there was an increase in the metal accumulation

at lower Zn levels in the growing matrix. AM are known to produce small cysteine-

rich proteins known as metallothioneins, which are similar to phytochelatins, a

group of cysteine-rich, heavy metal-binding proteins that are induced when plants

are faced with HM stress (Colbet and Goldsbrough 2002). AM association,

G. mosseae–C. sativa (var. Carmagnola), enhances the root-to-shoot metal translo-

cation to sequester toxic metals in the shoot cell vacuoles by metallothioneins and

phytochelatins. Further, transcription of the phytochelatin synthetase gene and

three metallothionein genes was increased in mycorrhizal pea roots in response to

heavy metal stress (Citterio et al. 2005).

A transcriptional increase of the glutathione-dependent glutathione S-transferase
gene was observed in Glomus intraradices that colonized Medicago truncatula
plants when subjected to Zn stress (Hildebrandt et al. 2007). Further, upregulation

of ROS metabolic genes suggests that fungal heavy metal tolerance also affects the

heavy metal tolerance of plants. However, the exact mechanisms of mycorrhizal
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fungi-induced heavy metal tolerance and its effect on plants still needs substantial

research.

18.8 The Future of Rhizosphere Technology in Heavy Metal

Bioremediation

Despite the findings and observations that promote the use of plant–PGPR interac-

tion as an effective strategy for bioremediation of heavy metals in contaminated

soil, acceptance of this strategy is not widespread due to the measurement of its

performance, ultimate utilization of by-products and its overall economic viability.

Till now, the technologies have been rated more on economic efficiency and time.

Therefore, this strategy has been evaluated using commercial constraints, i.e. by the

expectation that site remediation should be achieved in a time comparable to other

clean-up technologies. Also, the observations and data have been collected under

laboratory conditions, where promising bacteria are not in competition with indig-

enous soil bacteria, which is the situation in real soil. The future of this strategy is

still in the research and development phase and there are many technical barriers

that need to be addressed. To optimize the application of plants and PGPR in

bioremediation, it is imperative that not only the efficiency and tolerance of each

partner is studied in isolation, but also that there is a proper understanding of

symbiosis in the presence of heavy metals.

18.9 Conclusion

The alternative use of PGPR–plant symbiosis for environmental application is a

recent outshoot of biofertilizer biotechnology. The main attraction of this technol-

ogy lies in fact that it is sustainable and inexpensive, and therefore offers a viable

alternative to conventional remediation methods. Pertaining to the requirements of

the growing population, excessive use of chemicals in agriculture and industrial

development will only increase. Therefore, we have no other option but to develop

suitable strategies like those using rhizosphere biology to cope with the challenges

of heavy metal contamination of soil. This technology not only assures clean and

healthy soil free from heavy metals, but PGPR also improve the fertility of soil for

future agronomic use, which is the main benefit. Optimizing the process with fast-

growing plants with high biomass and good metal-uptake ability along with suitable

bacteria in the rhizosphere will provide new insights.
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Chapter 19

The State of the Rhizoinhabitants in Bridging

the Gap Between Plant Productivity and

Persuasiveness During Remediation

Narayanan Rajendran

19.1 Introduction

The proliferation of contaminants and chemicals in various ecosystems is increas-

ingly posing major environmental and global concerns. Soil and ground water

contamination by hazardous chemicals such as arsenic and other contaminants

poses major environmental and plant productivity problems (Vithanage et al.

2012), and thus remediation of contaminants for improved plant productivity by

plant inhabitants through the means of biotic and abiotic remediation systems is of

great interest. A number of eco-friendly technology-related transformations in

several bioremediation subsets such as microbial remediation, phytoremediation,

phycoremediation and macrophyte remediation (Basile et al. 2012) offer insights

into the problems of chemical contamination in agro-ecosystems (Hinsinger et al.

2011). Among these subsets, rhizoinhabitant-based remediation (e.g. use of endo-

phytic microbes) has a foremost benefit for enhanced plant productivity (Qin et al.

2011). The “green look” of plants while they remediate soil contaminants has a high

public acceptability over any other method of remediation, besides generating a

profitable influence among ecosystem consumers. It has been reported that the

feasibility of commercial use of such rhizoinhabitants is favored by policy makers

and scientists for environmental clean-up because of better ecosystem functionality

(Sanon et al. 2009) in addition to better plant productivity.

Plants have the innate ability to transform some of the complex organic

pollutants into simple, nontoxic compounds (Meagher 2000) and/or the inherent

capability to transform inorganic pollutants to less toxic substances. Engineered

transgenic plants have an improved but acquired ability to do the same, in addition

to the amazing stabilization capability for metal contaminants by acting as “filters

or traps” (Raskin 1996). The high achiever status of both groups of remediator
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plants strongly depends not only on their innate or acquired capacity but also on the

correlation between survivability of the plants and the state of their inhabitant

partners such as bacteria. Some plant growth-promoting bacteria (PGPR) have a

higher influence on plant growth and yield (Hameeda et al. 2006) and because of the

“most-favorable status”, microorganisms play a key role in ecosystem restoration

and functioning (Balser et al. 2006). Microbial associations with plants are versatile

and are a well-established combinatorial field of study on interactions. However,

the interface between plants and microbes is very intriguing at every level of

affiliation, from the rhizosphere to the phyllosphere, as well as at every stage of

on-and-off symbiotic or antagonistic relationships. It is fair to articulate that a

network of inter-related ecological and biological relationships exists between

them. Hence, plant–microbe interactions and their population dynamics are essen-

tial (Sanon et al. 2009). Moreover, how the composition of the co-occurring

microbial community responds to the plant communities is crucial to an under-

standing of their innate ability and acquired capability for remediation.

The knowledge of molecular mechanisms of detoxification of chemical

contaminants by rhizobial inhabitants has merged with engineering strategies to

improve phytoremediation processes (Vance 1996) and has already proved to be a

viable and safe alternative for remediation of many contaminants, especially in situ

(Compton et al. 1998). A number of green remediation techniques have now been

developed and are commercially available in some form or other. As the technology

continues to offer new, low-cost green remediation options some of them are

intensively applied in practice for better plant productivity in different terms and

forms along with some of the synergistic subsets of phytoremediation technology.

This article reviews the state of the plant inhabitants, rhizobia in particular, and the

factors that influence the balance between plant productivity and plant persuasive-

ness so that their inhabitants are held and thrive for better productivity in terms of

survival and effectiveness. We attempt to address the potential influence of the co-

occurring soil bacterial communities, the types of chemical speciation available at

the sites and how plant populations deal with plant–plant, plant–microbe and

plant–chemical interactions and bridge the gap between all three in order to show

productivity while remediating toxic chemicals.

19.2 Norming of Plant Productivity-Based Remediation

Whether in a fertile soil or any other setting, the association of plants and its

rhizobial inhabitants must pass through several phases before they fully become

“associated”. The shared expectation of contact, otherwise called the “norms”, is

crucial for such association in order to remediate the contaminant sites while

enhancing plant productivity. In practice, if the state of the rhizospheric microbes,

soil bacteria in particular, remains unmired by their performance, the plant produc-

tivity goes down while remediation of toxicants goes up (Madhaiyan et al. 2009).

The more association there is towards a common goal, the more they tend to
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converge toward the common perspective of plant productivity and remediation.

The rhizobacteria depend on the plant roots, acknowledge and abide by the norms

set by the plants. Such a norming process has an effect on the level of effort set by

plants for their productivity associated with the kind of remediation it follows. The

primary role of the host plant in this association with soil bacteria is to gain

enhanced productivity. Hence, they make persuasiveness their priority and facili-

tate the practice of cohesion with soil microbes (Buée et al. 2009). This association

can be applied to any type of “green remediation”, a collective expression for a

combination of several remediation techniques such as plant-based

(phytoremediation), algae-based (phycoremediation), microbe-based (microbial

remediation) and other form of nature-based (bioremediation) remediation pro-

cesses, for contaminant clean-up processes since the association of two partners

is structurally similar. Due to the synergistic effect of chemicals on ecosystems

(Barbosa et al. 1998), which poses a significant threat to life forms, green remedia-

tion dictates the need for such alternative approaches to solve such emerging risks.

The success of green remediation is closely associated with the plants and its

inhabitants such as microbes and the ability of plants (as well as their persuasive-

ness) to deal with toxic chemicals in spite of barriers such as environmental factors

and the functional stability of the inhabited ecosystem itself.

The seasonal dynamics of plant populations in any given ecosystem plays a

major role in plant productivity and ecosystem restoration. Similarly, rhizobial

inhabitants (especially soil bacteria) have a significant role to play in the functional

stability of ecosystems (Cotner and Biddanda 2002). Beyond the state of the

rhizobacteria, it is also important to recognize that various chemicals in the form

of nutrients at the contaminated sites play a key role in the survival of both plants

and the rhizobial inhabitants. The biochemical transformation of these chemicals by

plants and microbes, as studied extensively in the laboratory, may vary more than

in-situ transformation at the toxic plumes. For example, selenium was accumulated

much less in Canola plants when grown in field conditions than in greenhouse

conditions (Banuelos et al. 1998). This indicates that beyond the biological factors,

other environmental factors affect plant persuasiveness. These factors include, but

are not limited to, the diversity of the main microbial community, the co-existence

of microbial communities, plant–microbial population dynamics in relation to

chemical remediation and the responsible role of “plant norms” in chemical reme-

diation. Moreover, the shape of the co-occurring rhizobacterial communities and

their composition respond to the plant communities and also make difference. Since

this emerging biologically safe green remediation technology is expanding, not

only for toxicant removal on contaminated plumes but also as a land-recovery

strategy, especially on mountain top removal and mining sites, it is important to

know about the effects of plant persuasiveness on chemical remediation.

Green remediation has been developed from a conceptual methodology to a

viable plant productivity-based technology for contaminant clean-up. There are

several technical terms used to explain the different remediation processes in this

plant productivity-based green remediation technology. For example, many

terminologies (Table 19.1) such as the biomechanism of chemical resistance,
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uptake, translocation, accumulation etc. are unique to phytoremediation. Hence,

selection of a suitable synergistic remediation process and its plant species has a

profound effect on the enhanced productivity-based decontamination process.

Phytoremediation in particular is well known (Macek et al. 2002b) for its ability

to take up and concentrate contaminants in biological tissues without destroying the

environment. Several plant species have a high innate ability to uptake (Jha et al.

2010) metals, and to accumulate and metabolize toxic chemicals. The higher the

plant productivity, the better is the accumulation of such toxic chemicals, beyond

providing esthetic value over any other biological life forms. As a result, the

incinerated plant ash of the accumulated plants or parts of the plants can be reused

similarly to “commercial ore” or can be recycled. The plants can also be

decomposed into modified green manure or disposed of as metal-based organic

matter through an authorized method of disposal of hazardous items. The associa-

tion of plants and toxic contaminants therefore offers a viable means of

accomplishing the in-situ remediation of contaminated sites.

Table 19.1 Technical terms commonly used in phytoremediation

Terms Description

Aquifer Any sediment with spaces that hold water in sufficient quantities to yield

economically valuable amounts of water to wells and springs

Biomining The process of uptake of minerals by plants or microbial life forms

Flood plain The nearly level land that borders a stream and is subject to flooding

Hyperaccumulators Plants that accumulate high level of contaminants, especially heavy metals

Leaching The removal of soluble matter from soil by percolating water

Phytoaccumulation Accumulation of contaminants in leaves and stems followed by the uptake

Phytodegradation Transformation of chemical contaminants into another form by plants during

their metabolic activities, instead of accumulation or volatilization

Phytoextraction After remediation, the plant parts such as leaves, stems, roots, etc. are

harvested and crushed to separate the chemical contaminants

Phytostabilization Use of plants to eliminate the bioavailability of toxic chemicals, especially

metals and radionuclides, in soil thus rendering them nontoxic

Phytostimulation To improve the remediation process, plants and/or its habitat are treated with

a microbial consortium or tracer elements or enzymes, etc

Phytovolatilization Evaporation of remediated chemicals through leaves; e.g. poplar trees

volatilizee 90 % of TCE, which they uptake from soil

Recharge The addition of water to the zone of saturation for better remediation

Rhizofiltration Tufted plant roots are used to clean up water contaminants to precipitate and

concentrate chemicals from polluted effluents

Rhizosecretion A subset of molecular farming techniques designed to produce and secrete

valuable natural products and recombinant proteins from roots

Rhizosphere A zone directly related to the surface area of the plant roots associated with

the growth of microorganisms directly related to the roots

Saturation zone Typically referred to as the area below the water table where pore spaces in

the sediment or rock are filled with water
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19.2.1 The Role of Rhizobial Inhabitants

Phytoremediation has its limitation like any other technology. It is a long process

and is restricted to deep-depth remediation sites. Moreover, the productivity of

remediator plants goes down when accumulation of the toxicants increases in their

biological tissues due to intercellular colonization by the rhizobacteria

(Murugaiyan et al. 2009). The other significant constraint is the use of non-native

or invasive species of phytoremediators (Chaudhry et al. 2002). However,

phytoremediation many advantages over physical and chemical means of remedia-

tion. It is cost-effective as well as environmentally friendly (Liphadzi and Kirkham

2006). It is safe, biologically feasible and long-lasting to use plants to remove metal

contaminants (especially nickel, zinc and copper from explosives and ammunition

wastes), to remove organic contaminants from crude oil wastes and oil spillage or to

remove a variety of other contaminants such as pesticides, solvents and landfill

leachates. Many factors help to achieve a progressive phytoremediation for heavy

metal remediation (Kamnev and Lelie 2000). Compared to conventional

technologies, which render the soil unusable for several years and destroy the

natural components and structure of the soil, plant productivity-based

phytoremediation offers the advantages of being truly in situ, has lower capital

and labor costs, retains the functionality of the soil structure and ecosystem,

involves minimal disturbance to the environment and allows reuse of the

remediated site within a short period. At high-risk sites of contaminants,

phytoextraction from plants with high accumulation of metals can be used as a

supportive method to remove the leftover contaminants. Because of the ability of

the deep roots of specific terrestrial plants, which reach a specific depth and clean

up the last remains of contaminants, productivity-based phytoremediation is a

viable alternative technology for progressive sites, where high concentrations of

metallic elements are present in the soil (Baker 1989) and rhizosphere.

Phytoremediation is a passive technique and has a high public acceptance. The

green canopy of remediator plants has an esthetic value (Beard and Green 1994)

and is useful in urban areas as a reducer of noise pollution. Trees added to

contamination sites as forest cover not only increase the percentage of forest but

also give a green cover to protect the barren soil, protect direct evaporation of

ground water and prevent human settlement. They are very good solar energy-

driven potential energy trappers as well as good stimulants for rainfall. Besides,

nematode communities and other soil populations can interact and improve the soil

structure because of the remediator tree plantations. The plant material with

accumulated mine contaminants can be evenly distributed and decomposed in

trace metal-deficient soils to enhance the soil fertility. Depending on the mineral

content of the incinerate ash, it could also be used as compost or fertilizer with other

substrates. Besides, revitalization of contaminated sites, particularly the

metaloferrous mining sites (Bradshaw and Johnson 1992) through re-vegetating

the land helps to create more public acceptance.
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Beyond focusing on unique remediator plants with specific characterization, it is

necessary to typify the physiological, biochemical and molecular responses of other

phytoinhabitants besides the rhizobacteria. For example, organisms like Horn-

worm, Thrips, Leafhoppers etc. as well as environmental chemical stimuli (includ-

ing airborne chemicals) play roles in plant productivity. The most common

organisms such as Thysanoptera (Thrips) and Homoptera (Leafhoppers),

Hymenoptera (bees and wasps), Neuroptera (lacewings), Collembola (springtails)

and Psocoptera (barklice) are found around exotic plants, while Coleoptera
(beetles), Homoptera (aphids, cicadas), Heteroptera (true bugs) and Lepidoptera
(butterflies and moths) are found on native plants (Devinny et al. 2005). In general,

observation of those plants could reveal their relevant phytoinhabitants. For exam-

ple, tomato plants of Solanaceae attract Hornworms (Manduca sexta, equipped
with a red-tipped horn at the end of the abdomen as shown in Fig. 19.1) through

volatile emission of its “signature” alkaloid-rich secretions. Similarly, Tobacco

Hornworms (Manduca sexta sexta) can sense a similar alkaloid secretion and

feed on alkaloid-rich tobacco plants. Its special mechanism for selective

sequestering of alkaloids (such as nicotine in tobacco plants) basically helps it to

feed on nicotine-rich tobacco or alkaloid-rich tomato plants. Furthermore, the

nicotine in the tobacco leaf is toxic to many insects but not to the Tobacco

Hornworm, therefore it is able to successfully feed on this plant. The evolutionary

existence of the same innate mechanisms in two entirely different species has

resulted in two diverse functionalities: one that protects the plant remediator from

several insect pests, and another that overcomes the same protection barrier by an

ability to selectively sequester alkaloids.

19.2.2 The Role of Plants and Their Persuasiveness

In general, success of a phytoremediation process starts with the selection of

remediator plants in compliance with the contaminated sites. For the past two decades,

more than 1,700 plant species have been used to remove contaminations from polluted

sites (Hoseini et al. 2012). Approximately 400 plant species have been used to take up

unusually large amounts of contaminants both in terrestrial and aquatic sites. Among

them, 47 plant species are considered as hyper-accumulator plants for radioactive

elements including cesium and strontium (Singh et al. 2008). Table 19.2 shows some

of the prominent plants that have been studied up to now. Phytoremediator cultivation

and management strategies such as selection of plant species, planting densities and

crop rotation can have profound influence on the its persuasiveness and degree of

remediation. Selection of indigenous plants that are capable of degrading the pollutant

especially at industrial sites (Kirschner 1995) is not only significant but also vital

because plants are required that will growwell in that specific local environment, such

as ecologically sensitive islands where only native plants should be allowed to grow.

This is not only acceptable by the local community but also considered a biogeogra-

phically successful approach, as the indigenous plants are adopted well by the
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community. Therefore, a comprehensive understanding of phytoremediators and the

uptake, tolerance and transport of heavy metals is essential for the development of

phytoremediation technologies (Basile et al. 2012).

Plants have the ability to take up metals or solvents, depending on the habitat and

habits of the plants (Zenk 1996). The uptake of chemical contaminants by specific

remediator plants depends on the specific contaminant sites. Surface

contaminations including toxic metals can be remediated by terrestrial herbs such

as Hibiscus cannabinus, which has gained attention for remediation processes as

reported recently (Meera and Agamuthu 2012). These herbs show cost-effective

mechanisms in remediating Fe and As from landfill leachate-contaminated soil

according to the assessment based on bioconcentration and translocation factors.

Results on the sequestration of As and Fe indicate that this Hibiscus variety can

tolerate these metals and hence are suitable for phytoextraction of leachate-

contaminated sites. Another such terrestrial herb, Sunflower, has significant physi-

ological response to trace elements such as Cd, Zn, Cu and nutrients accumulation

in contaminated soil (Rivelli et al. 2012). Contamination with Cd alone did not

affect the growth or physiological parameters; however, Zn, Cu and Cd together

showed toxic effects on chlorophyll content. In aquatic sites, many surface

contaminants have major influences on remediation processes such as the

bioaccumulation ability of plants. For example, three aquatic macrophytes

Lemna minor, Elodea canadensis and Leptodictyum riparium are considered good

bioaccumulators for the heavy metals (Vajpayee et al. 1995). Out of these,

L. riparium was the most effective in accumulating Cu, Zn and Pb, whereas

L. minor was the most effective in accumulating Cd (Basile et al. 2012). There

are many such aquatic and terrestrial remediator plants that exclusively pertain to

their habitat and that are reported to have growth characteristics and adaptability to

a wide range of soil, aquatic and climate conditions (Hooper and Vitousek 1998).

For example Spartina alterniflora and Juncus roemerianus are for the salt marsh;

Carex acutiformis and C. gracilis for river and streambanks; Phragmites australis,
Typha latifolia, T. angustifolia and T. dominguensis for lakeshores; Juncus effusus,
Cyperus giganteus, Scirpus polyphyllus, S. tabernaemontani and S. californicus

Fig. 19.1 Chemical sensing of plant inhabitants for survival. Tobacco Hornworms (Manduca
sexta), equipped with a red-tipped horn at the end of the abdomen, feed on alkaloid-rich tomato

plants. Its special alkaloid-sensing ability and mechanism for selectively sequestering alkaloids

helps it to feed on the alkaloid-rich tomato plants of Solanaceae and on nicotine-rich tobacco

leaves. The alkaloid nicotine in the tobacco leaf is toxic to several insects but not to this hornworm.

Understanding such metabolic substances of plants could reveal their phytoinhabitants, including

macro- or microorganisms
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Table 19.2 Promising plants for phytoremediation*

Plant species Target chemicals

Abelmoschus esculentus (Okra) Pb, crude oil

Achillea millefolium (Yarrow) Cu, Cd

Acer rubrum (Red maple) Leachate

Aelonthus biformifolis Cu

Agrostis tenuis Cu, Zn

Agrostis castellana (Colonial bent grass) Metals

Agropyron smithii (Western wheat grass) Hydrocarbons (TPHs, PAHs)

Aleopecurus pratensis Hydrocarbons (TPHs, PAHs)

Alpine pennycress Zn, Ni

Allium schoenoprasum (Chives) Cd

Amaranthus hybridus (Slim amaranth) PCBs, Ni

Amorpha fruicosa (Indigo bush) Pb

Anthurium andraeanum (Foliage herb) Formaldehyde

Arenaria rubella Ni

Artemisia frigid (Prairie sagewort) Crude oil, PCBs

Atriplex hortensis (Garden Orach) PCBs

Avena sativa (Oat) Zn, Cd

Bacopa monnieri (Water hyssop) Metals

Berkheya coddii Ni

Beta vulgaris L. (Sugar beet) Zn, Cd

Betula pendula (Euro white birch) PCBs, PAHs

Bouteloua gracilis (Blue gamma grass) Hydrocarbons (PAHs), selenium, sulfide

complexes, uranium, uranyl cation

Brassica juncea (Indian mustard) Se, Ar, Cd, sulfide complexes

Brassica napus (Canola) Cd, Pb, Zn

Brassica oleracea var. botrytis (Broccoli) Fe, Mn, Zn, Ni, Cd

Brassica pekinensis Rupr. Pb

Brassica rapa (Field mustard) Zn, Cd

Bromus biebersteinii (Meadow brome) Mn, Zn

Bromus inermis Metals, Cd

Buchloe dactyloides (Buffalo grass) Hydrocarbons

Callitriche stagnalis Uranium

Cannabis sativa Sr, Cs

Cerastium arvense Cd

Chlorophytum bichetii (Foliage herb) Formaldehyde

Claytonia perfoliata (Miner’s lettuce) Cd

Cucurbita pepo Mn, Zn, Cd, Fe

Cynodon dactylon (Burmuda grass) Hydrocarbons

Datura innoxia 2,4,6-Trinitrotoluene

Dichapetalum gelonioides Ni

Dieffenbachia spp. (Foliage herb) Formaldehyde

Digitalis purpurea (Common Foxglove) Cd

Eichhornia crassipes (Water hyacinth) Heavy metals

Elymus canadensis (Canadian wild rye) Hydrocarbons

Elymus dauricus (Dahurian wild rye) Hydrocarbons

Eucalyptus camaldulensis Arsenic, sodium

(continued)
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Table 19.2 (continued)

Plant species Target chemicals

Festuca arundinacea (Tall fescue) PAHs, pyrene, hydrocarbons

Festuca rubra (Red fescue) Hydrocarbons

Ficus pumila L. (Figs tree) Nitrogen dioxide

Fontinalis antipyretica Uranium

Gleditsia triacanthos (Honey locust) Pb

Haumaniastrum spp. Co, Cu

Heliathus annuus (Sunflower) Metals, radioactive contaminants

Holcus lanatus L. Arsenate

Hordeum vulgare (Barley) Zn, Cu

Hydrilla verticillata Metals

Juncus accuminatus Metals

Juniperium virginiana Cd, metals

Larrea tridentata Mn

Lavender augustifolia Mill (Lavender) Cd, Pb, Cu, Mn, Fe

Liquidambar styraciflua (American gum) Perchlorate

Liriodendron tulipifera (Yellow poplar) Metals

Lolium perenne (English ryegrass) Hydrocarbons

Lotus corniculatus (Birds-foot trefoil) Hydrocarbons

Lupinus albus (White lupin) Arsenic

Lupinus angustifolius Metals

Lupinus luteus As, Cd, Cu, Pb, Zn

Maclura pomifera (Osage orange) PCBs

Medicago sativa (Alfalfa) PAHs

Melilotus officinalis (Yellow clover) Hydrocarbons

Mimulus guttatus Cu

Morus rubra (Mulberry) PAHs, PCBs

Myriophyllum spicatum (Water milfoil) Heavy metals

Myriophyllum aquaticum (Parrot feather) Heavy metals

Oryza sativa L. (Rice) TCAB, Sm, sulfide complexes

Panicum virgatum (Switch grass) PAHs, hydrocarbons

Phacelia seicea Mn, Zn, Ni

Phaseolus acutifolius (Tepary bean) Uranium, uranyl cations

Phaseolus vulgaris Fe, Mn

Phleum pretense (White clover) PAHs, Ni, Cd

Phragmites australis (Common reed) Fe

Picea mariana (Black spruce) Hg

Picea pungens (Blue spruce) Mn

Pinus ponderosa Metals

Pisum sativum Uranium, uranyl cation

Psidium guajava (Guava) Formaldehyde

Poa alphine (Alpine blue grass) Organic contaminants

Populus deltoides (Poplar tree) Volatile organic compounds

Populus hopeiensis Cd, TCE

Populuseucoides Cd, Zn

Populus nira var. thevestina Cd

Populus tomentosa Cd, metals

(continued)
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for shallow wetlands; and Arundo donax, Paspalum sp. and Cyperus pseudovegetus
for various moist habitats. It is therefore recognized that the plants and their habitat

co-exert an influencing role on remediation, which can be exploited as a cost-

effective alternative for the treatment of contaminated soil and polluted aquifers.

Table 19.2 (continued)

Plant species Target chemicals

Populus tremula (Aspen) Pb

Rhapis excels Formaldehyde

Ricinus communis (Castor) Crude oil, toxic contaminants

Rosmarinus officinalis Formaldehyde

Scenedesmus acutus Ni

Scirpus acutus Atrazine

Schizachyrium scoparium (Bluestem grass) PAHs

Sebertia acuminata Ni

Senecia glaucus Hydrocarbons

Silene vulgaris (Bladder campion) Zn, Cd

Sinapis alba Pb, Cd, Hg, As, Cr

Solidago hispida (Hairy golden rod) Metals

Sonchus oleraceus L. Pb

Sorghum bicolor (Guinea corn) Crude oil

Sorghum sudanense (Sudan grass) PAHs

Spartina alternifolia Metals

Spartina patens PAHs

Spinacia oleracea (Naket Spinach) Crude oil, hydrocarbons

Spirodela polyrhiza L. Scheid Cd

Stellaria calycantha (Northern starwort) Cd

Stenotaphrum secundatum St. A. grass) Hydrocarbons

Tamarix parviflora (Tamarisk) As, high sodium

Tamarix aphylla Cd(NO3)2
Thlaspi caerulescens (Alpine pennycress) Zn, Cd, Ni

Thlaspi ochroleucum Heavy metal uptake

Thlaspi rotundifolium Pb

Thlaspi goesingense Ni

Tillandsia cyanea (Foliage herb) Formaldehyde

Trifolium pratense (Red clover) Hydrocarbons

Trifolium repens (White clover) PCBs, hydrocarbons

Triticum aestivum (Wheat) Pb

Typha latifolia Heavy metals

Typha domingensis Fe, Mn, Zn, Ni, Cd

Vicia faba (Broad beans) Metals, hydrocarbons

Vigna unguiculata (Cowpea) PAHs, metals

Wolffia globosa (Duckweed) Cr, Cd

Zamia pumila (Woody foliage plant) Formaldehyde

PAH polyaromatic hydrocarbon, PCB polychlorinated biphenyl, TCAB tetrachloroazobenzene,

TCE trichloroethylene, TPH total petroleum hydrocarbons

*It will help readers to select a group of promising plants for their comparative phytoremediation

works and even compare their phylogenic approach, with targeted chemical speciation.
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19.3 Factors Affecting Plant Productivity-Based Remediation

Every successful plant productivity-based remediation involving multiple

parameters requires collective action of plants and its involved rhizoinhabitants;

without these, the entire process tends to drift apart and lose efficiency. Environ-

mental factors such as rainfall, soil structure and seasonal cycles, as well as

chemical factors such as toxicants, chemical species, distribution pattern, chemo-

environmental stimuli, chemically enriched assemblage and dissolved organic/

inorganic matters play significant roles in plant productivity and phytoremediation.

Biotic factors like selection of remediator species can equally affect the

phytoremediation process and the state of the plant community itself. Also playing

a major role are biological factors like bacterial populations residing at the rhizo-

sphere, other phytoinhabitants, plant–microbial population dynamics and shifts in

the community richness and distribution, as well as plankton populations residing at

the aqua sphere, including seasonal algal dynamics ,. The entire process depends on

both biotic and abiotic factors, including chemical species that contribute to

changes in the remediation process as well as plant community composition

(Fig. 19.2). Even though individual plant or microbial population are highly

dynamic, they can act strangely in their response to chemical species and their

availability when acting together (Sivamani et al. 1992). The state of the plant

inhabitants depends, especially in chemically enriched assemblages, on the avail-

ability of dissolved organic and inorganic matter (Newman et al. 1998). Although

the processes are related to seasonal cycles, their interactions with chemicals and

the state of the rhizoinhabitants are related to resource management at the site. This

occurs in response to seasonal shifts and is influenced by factors such as seasonal

stability, temperature and the state of the plant community itself. Thus, the process

can depend on the pattern variability of seasonal shifts and other environmental

factors.

19.3.1 Environmental and Biological Factors

Studies on environmental factors including soil structure, water conditions,

toxicants, light intensity, temperature, mechanical injury, insect feeding and expo-

sure to pathogens and airborne chemicals have demonstrated that plants can be

developed as a reliable biological response to such stimuli. The chemical responses

of plants to environmental stimuli have profound implications for the development

of reliable phytoremediation processes. These responses are often expressed

through physiological pathways that can be readily measured by unique phenotypi-

cal observation of phytoinhabitants (Rajendran and Venkatesan 1993) as well as by

routine biochemical assays (Consuelo et al. 2004). All levels of their interactions in

response to irrigation or flooding of a nearby creek require an in-depth understand-

ing of their symbiotic relationships, especially when they act together in a hostile
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environment, where toxic chemicals threaten the very existence of plants. For

example, in an earlier study it was noticed that water quality in Stekoa Creek

(a major tributary of the Chattooga River, Georgia, USA) is degraded by sediment

that runs off from construction sites near the creek, as well as by bacterial contami-

nation from the wastewater treatment facilities in Clayton (Kent and Bayne 2010).

Consequently, the remediation site experienced shifts in the pattern of distribution

of the chemicals and other toxicants (Fig. 19.3) that can affect the state of the

phytoremediators as well as rhizoinhabitants. For example, remediation of poly-

aromatic hydrocarbons (PAHs), like naphthalene, in soil plumes can occur at

different rates. The evaporation rate of naphthalene for example is slow when the

concentration of the organic matter increases in a deep soil environment, whereas

the rate is elevated at areas of high concentration, especially the loading sites. The

PAHs are produced due to partial combustion of fossil fuels in traffic exhausts, coal

fires, heating etc. For example, naphthalene is a low molecular weight PAH widely

Fig. 19.2 The most common factors affecting the phytoremediation process. Environmental

factors such as rainfall, soil structure, seasonal cycles, as well as chemical factors such as

toxicants, chemical species, distribution pattern, chemo-environmental stimuli, chemically

enriched assemblage and dissolved organic/inorganic matter can all play a significant role in

phytoremediation. Biotic factors like selection of remediator species can equally affect the

phytoremediation process as can the state of the plant community itself. Microbial populations

residing at the rhizosphere as phytoinhabitants, plant–microbial population dynamics, shifts in the

community richness, bacterial distribution and plankton populations (including the seasonal

dynamics of algae residing at the aqua sphere) can also play a major role in the remediation process
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used in manufacturing industries as an additive or intermediate product for manu-

facture of dyes, plastics, repellents etc. (USEPA 2001). Over 500 tons of naphtha-

lene were released into the US soil in 1998 (US-EPA 2001), and 120 tons were

released by Canada in 2005 (Environment Canada 2008). Over 4,133,000 tons of

naphthalene were consumed by industries in 1 year throughout Western Europe

(Lacson 2000). The National Priorities List on hazardous waste sites compiled by

US-EPA indicates that naphthalene (Fig. 19.4) is one of the most common PAHs

found in dumping sites. Using novel techniques like the nutrient film technique, it is

possible to easily screen multiple clones of phytoremediators for growth in the

presence of various toxicants (Migeon et al. 2012).

Plant productivity-based phytoremediation is one of the most promising biore-

mediation techniques. However, the quality of the plants used in remediation

processes generally dictates the successes of the process (Anderson et al. 1993),

even though it depends on many other influencing factors. Using native

phytoremediator species has more advantages than use of invasive or introduced

agricultural species. Such native plants have dense, deep root systems adapted to

the local conditions, including seasonal conditions such as rainfall and instant

environmental exposures such as local contamination networks. Besides, native

species may have more phytoinhabitant associations, such as microbial alliance at

their rhizosphere, which improves plant productivity. The availability of root

exudates of native phytoremediators to the rhizoinhabitants enhances microbial

composition in the rhizosphere (Rambelli 1973), thus the native plant communities

may provide a network of chemical signaling that could enhance nutrient cycling

(Hooper and Vitousek 1998) and plant productivity. A group of native and quality

Fig. 19.3 General pattern of dispersal of a PAH toxicant from its highly concentrated state of

entry to least diffusion levels. Consequently, the remediation site (shown in green) may experience

shifts in the pattern of distribution of the chemical toxicants that can affect the state of the

phytoinhabitants. For example, remediation of polyaromatic hydrocarbons (PAHs) in soil plumes

(as shown in blue) can occur at different rates. On the basis of surface sediment scanning, the

evaporation rate of naphthalene (a significantly predominant PAH found in most PAH dumping

sites), is significantly higher at the loading area (where it is highly concentrated as shown by the

red contour) than the lower depth of the soil (where the concentration gradually decreases) due to

the augmentation of increased organic matter (as shown by the yellow contour)
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phytoremediators and their assemblages may provide enriched above-ground

habitats for phyllosphere microbes and macroorganisms. It is fair to say that the

network of such inter-related ecological and biological relationships make the food

web a more intricate process, with many linkages to the plant community.

The toxicants and pressure of environmental factors such as temperature, rain-

fall, drought etc. influences the state of the bioaccumulation process by

phytoremediators and their inhabitants. The concentrations of dominant toxicants

and related elements such as N and P could play a significant role in the growth of

phytoremediators along with other influencing factors such as the plant’s physio-

logical factors, the plant’s innate bioaccumulation ability and the quantity and

quality of the chemical resources available at the phytoremediation sites. Although

chemical species affect the bioaccumulation rate of the remediators, the presence

of an abundance of microbial populations with consistent patterns of distribution at

the remediation sites also has a significant influence on remediation. Heavy metal

accumulation in rhizobial tissues always exceeds that in phyllosphere tissues such

as in stem and leaves, with a lower translocation from roots to shoots (Rivelli et al.

2012). Hence, native phytoremediators like Helianthus annuus have developed an

innate ability to compartmentalize toxic wastes to preserve the young biological

tissues (Rivelli et al. 2012). This suggests that the state of the phytoremediation

depends not only on the toxicant resources and availability in the remediation sites

but also on microbial dynamics, which are determined by seasonal factors,

biological factors and the abundance of plant–microbe interactions. Dramatic shifts

in microbial community richness and abundance due to seasonal factors such as

Fig. 19.4 Chemical structure of one the most common PAHs, naphthalene. Naphthalene, a

bicyclic aromatic hydrocarbon, is frequently used in manufacturing sectors especially for dyes,

additives, plastics, repellents, etc. Large amounts of naphthalene are produced through partial

combustion of coal and other fossil fuels (traffic, heating, etc.). It was first registered as a pesticide

in the USA in 1948. The National Priorities List on hazardous waste sites compiled by the

US-Environmental Protection Agency indicates that naphthalene is one of the most widespread

PAHs and is found in most PAH dumping sites
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rainfall could result in the loss of remediation capability, which may be responsible

for the failure of a specific remediation process.

19.3.2 Resources for Enhanced Plant Productivity

There is a greater understanding today than ever before of the importance of

resources for high plant productivity. Any moderate changes in resource availabil-

ity could influence overall productivity and the phytoremediation process itself.

The pH, for example, greatly affects trace element accumulation in above-ground

biomass (Migeon et al. 2012). Such variation affects not only different

phytoremediators but also the biomass productivity. A recent study with large

range of poplar clones revealed the potential of the poplar clones for use in

phytostabilization, where some clones rather than others were suitable for produc-

tion of less-contaminated above-ground biomass . Plant biomass and trace element

accumulation patterns in leaves also showed variation among clones. For example,

the highest Cd and Zn concentrations in leaves were detected in P. trichocarpa and
P. trichocarpa hybrids and varied with the clones when exposed to a multipollution

context (Migeon et al. 2012). Similarly, altering the quantity and composition of

dissolved organic matter over time may play an important role in determining the

rate of the phytoremediation. Mercury contamination in aquatics and wetlands is

harmful to life on earth. Although the relative importance of these methylation sites

may vary seasonally and spatially, several studies suggest that wetlands are the

principal source of methylmercury (MeHg) to lakes when wetland runoff dominates

the catchment hydrology (Watras et al. 2005). Such toxic contaminants have a

major impact on the plant–microbial food web. The increase in soil bacterial

population parallel with phytoinhabitant abundance may represent a combination

of direct and indirect effects, including release of nutrients from the remediation

sites. Such changes can rapidly induce compensatory alterations in plant–microbial

community structure and their interactions that result in the formation of a size

reduce from multiplication.

19.3.3 Over-grazing and Predatory Influences

Over-grazing of the plant community may strongly influence biomass productivity

and phytoinhabitant dynamics in any remediation sites, including terrestrial or

aquatic sites. Soil rhizobial inhabitant communities in association with plants are

better at scavenging nutrients and for degradation of contaminants. The total

quantity of microorganisms degrades more toxic contaminants than the

phytoremediator itself. Some bacterial groups have unusual degradative metabolic

pathways to degrade soil containments, such as Pseudomonas stutzerii against
carbon tetrachloride (Sepulveda et al. 1999) and some have particular biochemical
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pathways when acting synergistically, but not alone (Lappin et al. 1985). In some

cases, plant exudates provided easy access of nutrients to rhizobial inhabitants and

promote synergistic remediation. Changes in the proportion of soil bacteria thus

makes a difference and could be a mechanism that influences plant dynamics and

plant inhabitant community structure in the soil remediation environment. Rapid

changes in soil microbial community-abundance have consequences for the plant

inhabitant community (Kent and Triplett 2002), which ultimately affects the

phytoremediation process. Predation by other populations, including growing

microbes, and human activities determine the species composition and quantity at

the phytoremediation sites. The distribution and community structure of bacteria

play major roles (Yannarell and Kent 2009) and it is essential to study predation by

competing bacterial populations. In addition, the absence of biological defensive

mechanism such as thorns or poisonous exudates allows large predators to play a

dominant role in plant existence. Shifts in plant community dynamics may be an

indirect effect of the suppression of microbial populations by chemical toxicants or

a direct effect of chemo-grazing of chemical aggregates similar to that of predation-

mediated disturbance (Jurgens and Sala 2000). Thus, the consideration of rhizo-

sphere communities, phytoremediator species ecology and diversity of

phytoinhabitants suggests that a set of predatory influences will always affect the

performance of phytoremediators as well as the native phytoinhabitant assemblages

in terms of toxicant degradation. If all elements of the ecosytem are thriving, they

will offer a greater biomass increase and better remediation in bridging the gap

between plant productivity and chemical remediation.

19.4 Chemical Contaminants and Toxicant Species

Soils polluted with polycyclic aromatic hydrocarbons (PAHs) and other toxicants

are of environmental concern. Wetlands are often net sources of methylmercury

(MeHg). It accumulates in aquatic food webs and contaminates fish and related

aquatic life-forms (Watras et al. 2005). It poses the greatest risk to drinking water

and humans. Toxic heavy metals and organic pollutants are major potential targets

for phytoremediation. Enhancement of PAH dissipation in vegetated soil is often

suggested to be a result of a rhizosphere effect caused by root exudates (Aprill and

Sims 1990). One of the methods that can be effectively applied for cleaning up

many such toxicants particularly PAH is rhizosphere bioremediation (Frick et al.

1999). Many toxicants persist hundreds of years in smelter and mining sites and in

ammunition waste. Major toxic chemicals and their species are mercury (Hg)

(Bizily et al. 1999; Eckley et al. 2005), polychlorinated biphenyls, chlorinated

benzoic acid, hexachlorobiphenyl, 2,4,6-trinitrotoluene (TNT), naphthalene,

pyrene (Liste and Alexander 2000), chloroacetamide herbicides, benzo(a)pyrene,

3,30,4,4-tetrachloroazobenzene (TCAB), arsenic (As) (Pickering et al. 2000), poly-

cyclic aromatic hydrocarbons (PAHs) (Pradhan et al. 1998), metals such as nickel

(Ni), zinc (Zn), copper (Cu), rubidium (Rb), cesium (Cs), manganese (Mn), iron
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(Fe), selenium (Se), chromium (Cr), cadmium (Cd) (Nedelkoska and Doran 2000)

and lead (Pb) or radioactive isotopes such as uranium (U), Cs-137, strontium (Sr)

and cobalt (Co). Beranova et al. (2007) have studied rhizoremediation for decon-

tamination of long-term PCB-contaminated soil with a focus on microbial diversity.

Bacteria are able to transform PCBs under aerobic or anaerobic conditions. The

anaerobic process, reductive dechlorination, leads to the formation of lower

chlorinated PCBs that are aerobically more easily degraded than congeners with a

higher level of chlorination (Furukawa 2006). Aerobic bacteria that are able to

degrade PCBs have been isolated and identified from, for example, strains of the

genera Pseudomonas, Achromobacter, Alcaligenes, Burkholderia, Ralstonia and

Rhodococcus among others. These bacteria are able to use biphenyl as a sole source

of carbon and energy and PCBs are co-metabolized by the enzymes of biphenyl

pathway. These enzymes are encoded by genes included in biphenyl operon

(Abramowicz 1990).

Uptake and accumulation of chemical contaminants by plants varies from

species to species, based on the chemical contaminant speciation. Some plant

species act as powerful remediators of the primary chemical contaminants but

others remediate only the chemical species of the primary contaminants. For

example, uptake and accumulation of selenium and its chemical species were

varied in Indian mustard (De Souza et al. 1998), broccoli, sugarbeet and rice

(Zayed et al. 1998). Similarly, remediation of trichloroethylene (TCE), tetrachlor-

oethylene (PCE) (Newman et al. 1998) and species such as trichloroethanol, and

trichloroacetic acid as well as nitroaromatic compounds (Rivera et al. 1998) such as

aminodinitrotoluene, diaminonitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine

(RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7,-tetraazocine (HMX) were varied

as reported earlier. Among the plant species, dewberry (Rubus caesius), vipers-
bugloss (Echium vulgare), scarlet-pimpernel (Anagallis arvensis) and narrow-leaf

plantain (Plantago lanceolata) can accumulate significant amount of Pb, Cu, Zn

and Cd. Besides xenobiotic degradation of 2,4,5-trichlorophenoxyacitic acid (Boyle

and Shann 1998) and the high potential for removal of chlorinated compounds such

as carbon tetrachloride and PCE, the degradation of brominated compounds such as

ethylene dibromide and dibromochloropropane as well as nonhalogenated

compounds such as methyl-t-butyl ether (Newman et al. 1998) significantly

depends on the quality of the plant species used rather than the zone of their

accumulation.

19.4.1 Contaminants and Plume Systematics

The concentration of xenobiotics in a contaminated plume may have variable

effects on phytoremediator plants. Unless we study the array of toxicants and

their level of persistence in the contaminated sites, it is ineffective to use any

phytoremediator to achieve the intended remediation. For example, many grasses

may be suited for heavy metal remediation (Peterson et al. 1998) but not all; why
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does such inequity exist in nature? Because of the multiple degree of toxicity

present in a contaminant site, there may be a variable intensity of influences on

the biological accumulation of toxic chemicals in grasses while the remediation

process in progress. For example, Cd is one the most toxic metals, followed by Pb,

Cu and Zn. At the molecular level, sublethal concentrations of the heavy metals

cause induced cell plasmolysis and alterations in the chloroplast arrangement

(Basile et al. 2012). Therefore it is prudent to pay attention to the contour of the

plume before selecting a phytoremediator. The pinpointing of the remediation spot

followed by categorization of its spreading outline is the foremost step in the

phytoremediation process. Once attained, the remediators can be grouped

according to their levels of remediation potential and the ability of the remediator,

in association with its rhizosphere, to reach the contaminants. The types of

remediators (such as terrestrial or aquatic) as well as their level of remediation

are schematically explained in Fig. 19.5.

Terrestrial phytoremediators are divided into five groups based on the ability of

the roots in the rhizosphere to reach the contaminants.

1. Surface remediator: The rhizosphere of this group of phytoremediator can reach

less than 10 cm from the focal point of the root of origin

2. Sub-surface remediator: The rhizosphere spreads beyond 12 but less than 24 cm

depth in soil (example: herbs like Alpine pennycress)
3. Deep-surface remediator: The rhizosphere spreads beyond 24 but less than

36 cm depth in the soil (example: Picea spp.)

4. Core remediator: It has a moderately deep rhizosphere of more than 3 ft depth in

the soil (example: Juniperium virginiana)
5. Deep-core remediator: The roots can penetrate beyond 6 ft deep and spread very

broadly in the soil. (example: trees like Ficus pumila L.).

Aquatic photoremediators can scavenge the toxicants directly from the aqueous

surface (Rajendran and Arokiasamy 1990) by floating on the surface area or fully/

partially submerge into water. In a recent heavy metal removal experiment, it was

revealed that macrophytes showed excellent performance in removing the selected

metals, thus suggesting that they are good candidates for wastewater remediation

purposes (Basile et al. 2012). These aquatic remediators are divided into five groups

based on their remediation ability.

1. Floating remediator: They have tough roots and can move with the water current.

2. Emerged remediator: They can float but most of the green parts are emerged on

the water like a water hyacinth.

3. Submerged remediator: They show less surface area to the sun and most of the

plant is underwater, for example plants that live under water but protrude out to

get a minimum of sunlight for survival.

4. Deep-submerged remediator: They are fully submerged aquatic plants and may

move with the water current.

5. Anchored remediator: They are rooted on the floor of the water body in deeper

areas.
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19.4.2 Phytoinformatics and Data Analysis

Gathering large amounts of data and interpreting outsized datasets for successful

phytoremediation is emerging into a frontier field of study in remediation. Fine-

scale phylogenetic analysis may open new possibilities on the patterns and roles of

specific phytoinhabitant populations in ecosystem processes. Applying such com-

munity datasets to research examining microbial, algal and related populations in

different environments (including aquatic and terrestrial systems) helps ecosystem

management and analysis. Many techniques are scattered across different fields of

study and it is time to collectively apply them together in phytoremediation. For

example, molecular biology-related microbial ecological techniques provide an

enormous amount of data, but it is not reaching phytoremediation researchers. It

is an urgent need to utilize modern techniques from other disciplines, e.g.

Fig. 19.5 Types of remediator plants and their potential remediation levels. The two states of

remediator lifeforms, terrestrial and aquatic, play major roles in our everyday existence by

remediating chemical toxicants from the environment. The state of the soil remediator group is

divided into five assemblages based on the ability of the roots in the rhizosphere to reach the

contaminants: (1) surface remediator, (2) sub-surface remediator, (3) deep-surface remediator, (4)

core remediator and (5) deep-core remediator. The state of the aquatic phytoremediator group is

divided based on the scavenging of toxicants directly from the aqueous facade by floating on the

surface area or fully or partially submerged into water. Their five assemblages are: (1) floating

remediator, (2) emerged remediator, (3) submerged remediator, (4) deep-submerged remediator

and (5) anchored remediator
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“ecosystem process models” that are used for synthesizing biogeochemical cycles

and generating data on nutrient cycling and patterns.

The results on specific mechanisms that are the most influential for changing

carbon and nitrogen budgets can be used in experimental trials to synthesize

prediction data (Davis et al. 2010). A similar approach can be used for

phytoremediator plants by applying various agricultural and cultivation practices.

This would provide large datasets describing microbial community composition

and variation across time and space. It could provide C and N cycling of

phytoremediation ecosystems that can be used. The design principles and data

model should be used during database development and will help researchers to

get bioinformatics data on remediator plants and phytoinhabitants, especially

microbial bioinformatics data. Such data-mining processes have enormous poten-

tial for the design of environmentally friendly phytoremediation methods for

practical use in a broader perspective by utilizing other biological databases.

Microbial community datasets must be linked with phytoremediator plants in

relation to related environmental factors. This challenging task is how to get

reasonable data from the slow-growing phytoremediators and the real-time reme-

diation process. Analytical and molecular techniques available in microbial ecol-

ogy have the potential to reveal more about the relationship between

phytoremediator plants and phytoinhabitants, especially microbes and their role

in ecosystem functions (Jacob et al. 2005).

19.5 Synergistic Strategies

Plant-based remediation is an attractive, low-cost, in-situ green technology for the

progressive clean-up of toxicants (Sandermann 1992). In specific cases, it offers the

possibility of selectively removing only the metal contaminants, leaving the soil

unaffected in every other way. However, there are a few disadvantages to

phytoremediation technology. It is considered to be a slower process than mechani-

cal or chemical remediation methods (Schnoor et al. 1995). It has limitations such

as lower contaminant concentrations as well as site-specificity of contamination in

shallow soils, streams and very deep ground water. However, a synergistic

approach that takes advantage of the remarkable decontamination ability of plants

could enhance the accumulation of contaminants in feasible way. This approach

includes integrating the traditional remediation concepts with recent

phytoremediation methods to concentrate the contaminants from the environment

and to metabolize the various molecules in plant tissues. For example, in aquatic

environments, phytoplankton-based algal exudates influence bacterial community

structure (Paver and Kent 2010). Thus, similar influences and correlations between

phytoremediator aquatic macrophytes and phytoinhabitants such as bacterial and

algal communities need to be measured to understand the abundance and activity of

the phytoremediation. Physical (abiotic) parameters (Shah 2000) such as irrigation,

fertilization, plant rotation, alteration of the physical and chemical condition of soil,
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use of chelating agents and control of the transportation of contaminants from

deeper levels into the subsurface of roots zones together with biotic parameters

such as microbial formulations and symbiotic actions are some of the traditional

methods suitable for synergistic phytoremediation process. Biotic and abiotic

forces vary in relative importance at different spatial and temporal scales. For

example, abiotic factors such as geography, landscape position, hydrology, sea-

sonal events, tropic status and biotic factors such as competition, tropic interactions

and effect of plankton may all play a role in shaping the dynamics of lake bacterial

communities (Shade et al. 2007).

19.5.1 Biological Adaptation of Native Plants

Plant species used in remediation processes should adapt to the local climate and

soils conditions. Native plants as well as plants that are capable of supporting the

phytoinhabitants are well suited for such remediation processes, since they are

adapted to the area (Hellmers et al. 1955). In order to survive in the chemo-

pressured hostile conditions at the contaminated sites, many native

hyperaccumulator plants have developed larger root systems and succulent stems

and are able to compartmentalize the contaminants. Wetland remediator plants such

as Arundo, Phragmites, Typha and Scirpus act as pumps for nutrients and ions by

remediating from sediments. When plants are stabilized in the soil, roots of plants

such as Poplar and Cottonwoods reach down in depth towards the water table and

establish a dense mass of secondary roots that absorb large quantities of water along

with soluble contaminants. Once the rhizofiltration process is completed with

saturated contaminants, the biological pumping mechanism adopted by the plants

permits the contaminants to pass through the xylem in a rational way to reach the

leaves and other parts of the tree, where they are accumulated, partly metabolized or

partially reached volatile status. Based on nature’s pumping concept,

phytoremediation technologists adopt similar methods of mechanical means to

pump the ground water to the surface area to remediate the volatile contaminants.

However, a complete remediation cannot be achieved with this process due to the

persistence of non-volatile contaminants in the sites. This process can be coupled

with ground-remediation process similar to that of carbon tetrachloride remediation

at the polluted plume itself (Sepulveda et al. 1999) in order to achieve optimum

remediation.

19.5.2 Traditional Remediation Approaches

Harvesting the remediator plants before flowering and re-plantation of the site

supports fast uptake of contaminants rather than waiting for the plant’s full cycle.

This vegetative growth remediation process not only prevents formation of fruits,
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which may not be suitable for birds and other fruit-dependents, but also restricts the

offspring. Similarly, plant rotation with other kinds of remediator plants can help to

re-accumulate the contaminants in different proportions from the same site. This

type of re-vegetation of the landscape can be repeated to bring down the contami-

nant levels in the soil to allowable limits. Synergistic use of phytoremediators along

with wetting the site permits the free flow of water-transport to the remediator sites.

Certain plants under monoculture absorb unusually large amounts of certain metals

in comparison to other plants. The monoculture plantation helps decontamination if

the site has a particular contaminant. In other cases, a combination of different

plants would help to eliminate to multiple contaminants. In an in-situ testing

method, such as the target-neighbor method, it was evaluated how planting density

influences the uptake and to manipulate plant density for optimal removal of

contaminants (Shann 1995). Similarly, the metal distribution in contaminated

sites also influences the uptake, where metals in the sediments in the inlet zone

are at greater concentrations than in other areas (Kongroy et al. 2012). Therefore,

the high metal-removing potential of plants may need to be significantly

supplemented by in-situ remediation operations, especially for biomonitoring stud-

ies. This could be a useful phytoremediation technology for restoring water quality

by harvesting submerged and floating biomass (Ali et al. 1999).

19.5.3 Rhizobial Association and Plant Productivity

Phytoremediation is attractive (Siciliano and Germida 1998) since it uses renewable

resources like plant remediators to remove toxic wastes rather than using chemical

compounds. These plants can secrete root exudates such as phytoenzymes, which

can strongly support degradation of hydrocarbons and other contaminants (Kathi

and Khan 2011). In many cases, the biodegradation rate is dependent on the

individual composition of plant exudates (Merkl et al. 2005). During natural

attenuation and/or bioaugmentation, some of the indigenous rhizobial microflora

survive with the help of such plant exudates, which comes with a plentiful supply of

carbon sources and carry out bioremediation process more effectively. This proves

that a combinatorial green remediation approach, beyond using plants or microbial

communities to treat toxic wastes (Timmis et al. 1994), is more successful if it is

used effectively. Recently, the combination of both plant and microbes has emerged

as a promising synergistic rhizobacterial remediation process (Nichols et al. 1997).

Many studies used bacterial and bacterioplankton communities in various environ-

mental conditions to study their aggregate community pattern as well as their

influence on the environment (Kent et al. 2004). Many attempts were made

successfully to remediate toxicants, including organochlorine herbicides, by using

this bacterially enhanced phytoremediation method (Hogan et al. 2006). The

effectiveness of such microbe-associated rhizobial activity depends on specific

interactions between plants and their associated root microorganisms (Saraf et al.

2008) in relation to the soil property and the nature of compounds to be degraded
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(Reilley et al. 1996). For example, as high as 90 % reduction in the concentration of

diesel range organics were observed over a 24-week period when a microbial-

enhancing process was used within the rhizosphere of willow trees at an oil-

contaminated site (Carman et al. 1998). Similarly, inoculating Dahurian wild rye

(Elymus dauricus) or meadow brome (Bromus biebersteinii) with a combination of

Pseudomonas aeruginosa strain R75 and P. savastanoi strain CB35 increases

degradation of 2-chlorobenzoic acid in soil (Siciliano et al. 1998b).

Many bacteria can be directly used to remediate toxic wastes including PCBs

(Roberts 1987). The process called bacterization of seeds (Rajendran et al. 1991)

and/or seedlings of remediator plants with a microbial monoculture promotes

synergistic biomining. However, the mechanism by which bacterial inoculants

such as Pseudomonas species promote phytoremediation differs from plant to

plant (Siciliano et al. 1998b). Plants can be engineered to carry bacterial enzymes

to degrade biphenyls (Francova et al. 2003). Microorganisms and higher plants

have been used to clean waste water (Wolverton et al. 1983). In recent years,

biologically safe microbial compounds or growth-inducing tracer nutrients or

organic stimulants have been used at low concentrations to improve the rhizosphere

microbial communities, supports a hyper-growth of plants and help the growth of

more hyperaccumulator roots (Weyens et al. 2009). For example, low concentration

of ethylnediamine-N,N0-diacetic acid (EDDA) helps to chelate iron and increase

siderophore synthesis in the rhizobacteria in and around the roots of sunflowers. A

similar combined effect of biostimulation and phytoremediation was observed in a

post oil-spill habitat restoration and enhanced oil degradation in the soil when

marsh sods of Spartina alterniflora and Spartina patens were used. The results

suggest that vegetative transplantation can simultaneously restore oil-contaminated

wetlands and accelerate oil degradation in the soil (Lin and Mendelssohn 1998).

Tank and Saraf (2008) have reported that species of Pseudomonas NT1 and C5

show highest Ni decontamination from the soil as well as plant growth promotion in

Ni-spiked soil.

19.5.4 Symbiotic and Biocatalytic Approaches

Plant productivity-based restoration of hydrocarbon-contaminated soil, especially

in intense deep areas, is an intricate process because it strongly influences the plants

and its individual cells (Sadunishvili et al. 2009). In nature, it is proven that plants,

in association with other inhabitants, clean up petroleum contamination as a self-

sustaining remediation approach. This is the single most important symbiotic

approach to successful remediation. The rhizosphere of these plants plays a major

role in achieving the recycling process (Knatznelson 1965). Many grasses have a

similar innate ability for degradation of chemical species of PAH such as benzo[a]

pyrene, benzo[a]anthracene, dibenzo [a, h] anthracene and chrysene. For example,

Andropogon gerardii, Schizachyrium scoparium, Sorghastrum nutans, Panicum
virgatum, Elymus Canadensis, Bouteloua curtipendula, Bouteloua gracilis and
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Pascopyrum smithii are considered the best grasses for the phytoremediation of

drought and desert areas and to remediate crude oil (Kathi and Khan 2011).

Phytoremediation, on the other hand, especially of salt marsh and upland man-

made contamination sites is more successful when the plants symbiotically serve as

remediator by hosting other organisms. This involves not only efficient

phytoremediator plants but also the ecological characteristics of the rhizosphere

inhabitant communities they support. Aquatic macrophytes (Rajendran and George

1989) can scavenge more nutrients and contaminants in waterways when applied

synergistically. For example, the moss Ceratodon purpureus, water ferns like

Azolla and Athyrium yokoscense and fungi like Phanerochaete chrysoporium also

follow the synergistic biodegradation process, accompanied by plants and

phytochelates. Mycorrhizal association with marsh and other rhizospheres makes

the process more feasible (Shetty et al. 1995). For example, Pinus ponderosa hosts

the mycorrhizal fungal Hebeloma crustuliniforme to symbiotically degrade atra-

zine. Root exudates released from plants (such as enzymes, sugars, alcohols or

acids containing organic carbon) serve as substrates for soil or aquatic microflora

(Rovira 1959). Sometimes they encounter adversity due to the catalytic action of

other exudates; however, such catalytic action itself could be effective in improving

plant productivity by digesting the organic substances during the biodegradation

process.

Another promising approach is to using certain biocatalysts to break down

complex chlorinated solvents like TCE or ammunition wastes at the contaminated

plume. The primary breakdown process allows remediator plants to scavenge the

rest of the contaminants of the plume. For example, cytochrome p450 catalyzes a

variety of mono-oxygenation reactions for a wide range of lipophilic compounds,

including PAHs and a few other environmentally persistent pollutants. These

microbial cytochrome p450 pathways can be applied in the detoxification and

biodegradation of recalcitrant pollutants. Aquatic and wetland treatment processes,

against such types of TNT and RDX ammunition contaminants and for their

removal in ground water, can be employed by using similar approach (Best et al.

1999). For example, the root exudate of Dahurian wild rye (Elymus dauricus)
degrades 2-chlorobenzoic acid (Siciliano et al. 1998b) and overexpression of the

enzyme γ-glutamylcysteine synthetase in Brassica spp. enhances Cd tolerance and

accumulation in this Indian mustard (Zhu et al. 1999). These symbiotic restorations

of land can be used to restore the terrain for wildlife habitat and can be modified in

later years for commercial development.

19.6 Challenges in Plant Productivity and Remediation

Processes

Plant productivity-based phytoremediation faces several challenges. Optimizing

the process itself certainly moves the remediation process forward. For example,

instead of introducing invasive species into cleaning sites, using native plants
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provides a link between the clean-up and habitat restoration (Shrimp et al. 1993).

The rhizosphere of the phytoremediators promotes degradation of toxicants and at

the same time provides a habitat for many micro-and macroinhabitants to further

sustain the restoration process. Maintaining more efficient cooperation among the

partners means that more work is done. Unraveling the mechanisms of mineraliza-

tion and volatilization of contaminants in plants may lead to ways of increasing the

efficiency of the phytoremediation process. In a controlled environment, a 100 %

remediation can be obtained by using a “continuous flow phytoreactor”, as in the

case of TNT remediation (Rivera et al. 1998). However, in field studies, this may

not be the case due to the observed environmental influencing factors. For example,

approximately 10 % of selenium was accumulated in Canola plants when grown in

field conditions, whereas 50 % was noticed in greenhouse studies (Banuelos et al.

1998). To achieve high results, studies of soil characteristics, activities of microbial

communities, biomass and mineralization of hazardous chemicals are necessary

before and after planting of plant species (Boyle and Shann 1998). In contaminated

soil, the success of phytoremediation depends on the structure of the soil. The void

space or pore space of the soil dictates the soil phytoremediation process. It not only

holds water for plants and microflora but also keeps air needed for roots and aerobic

decomposition of organic molecules. Many metals are less soluble and thus less

mobile when high oxidation states persist in the contaminated soil. They are

maintained by the aerobic conditions and are very favorable for phytoremediation

technology (USEPA 1997).

19.6.1 Identification of Chemical Toxicants

Identification of the species of contaminants, including translocated, accumulated

or volatilized chemicals, as well as various converted forms in different parts of

aqueous and soil plumes is a challenge, and the first step to determine the efficiency

of plants in remediation processes. While the plant productivity increases, it is

equally important and challenging to detect the chemicals species and the accumu-

lation of toxic compounds in plant tissues and other parts of the high-accumulator

plants. The latter can be identified by speciation analysis using X-ray absorption

spectroscopy (Zayed et al. 1998). The volatilization of chemical species can be

measured by using gas chromatography coupled with electron capture detection

(GC-ECD) (Scheidemann et al. 1998). The translocated compounds can be

extracted using dichloromethane with acid hydrolysis followed by alkalization,

and the major metabolites separated using high-pressure liquid chromatography

(HPLC) and identified by nuclear magnetic resonance (NMR). In the soil, the

diversity of substrates utilized by the root-associated microbial communities can

be assessed using Biolog Gram-negative (GN) and Gram-positive (GP) plates. The

communities can be also characterized by extracting fatty acid methyl esters

(FAME) from rhizobacteria associated with plant roots (Siciliano et al. 1998a). In

the greenhouse, hydraulic control of supplementary water could serve as a
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monitoring device to observe remediation in aquatic plants. In fields, besides these

instruments, some other monitoring devices can also be used in order to monitor

heavy-metal uptake from contaminated soil. For example, ascorbate is used as a

marker of herbicide stress in wetland plants (Lytle and Lytle 1997). Measurement

of chlorophyll fluorescence-induction kinetics was introduced recently for similar

purposes in field phytoremediation. This portable chlorophyll fluorometer can be

used to identify the most applicable parameter for monitoring the remediation

process (Richter et al. 1998). In some cases, cytochrome p450 enzymes (Nelson

et al. 2004) in plants catalyze the high range of chemically divergent substrates.

Potential transgenic plants with tailored enzymatic activities could play major roles

in the removal of environmentally stable organic pollutants from contaminated

fields. Such enzymatic bioassays can be used to identify such toxicants to detect

contaminants at specific sites.

19.6.2 Custom-Designed Approaches

The challenges in phytoremediation are use of the right phytoremediator and the

handling of its highly productive biomass since it contains accumulated

contaminants. For some sites, there is a co-remediation solution available but for

other sites custom-designed methods are needed. For example, novel biotechnolog-

ical approaches that harness recent advances (Abhilash et al. 2012) in our under-

standing of phytoremediator plants, their chemical interactions and their

phytoinhabitants (such as microorganisms in the rhizosphere as well as within

plant tissue) can be revisited to optimize in-situ applications. For example, the

phytoremediation process can be custom-designed based on the organic matters

(Newman et al. 1998) available in the remediator soil. The degree of efficiency of

the remediation process in the rhizosphere varies according to the plant species

involved as well as the depth of the contaminants present in the plume. Based on the

available data, other forms of green remediation processes, including

phycoremediation in parallel with phytoremediation especially in aqueous plumes,

can be efficiently tailored for application. Adopting combinatorial

phytoremediation, such as plant and microbe-based methods especially in terrestrial

plumes, are more successful. The techniques such as phytoextraction,

phytodegradation, phytostabilization, rhizofiltration, phytovolatilization etc. make

green remediation more user-friendly and as efficient as commercial filtration

techniques. Custom-designed nanoparticles such as Ag, Au, Cu, Si, and C may

have unique accumulation patterns and solution properties that can significantly

impact particle fate and effects. A recent study on biomass, transpiration and

element content in zucchini plants revealed that plants are unaffected by Au

nanoparticles, regardless of particle size or concentration. Ag and Si nanoparticles

reduced plant biomass and transpiration to a significant degree. Cu nanoparticles

were phytotoxic but much of the effect was alleviated by humic acid. The shoot Ag
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and Cu content did not differ based on particle size or concentration (Hawthorne

et al. 2012).

19.6.3 Signature Model Using Bioindicator Plants

The so-called hyperaccumulator weeds have been identified as signature remediator

plants for the metal ores and radionuclides (Entry et al. 1996). They spread more in

alpine areas such as found in central Europe, Japan and the Rocky Mountains of the

USA. Based on the signature quality, many of these plants are identified as

bioindicator plants. For example, the duckweed (Wolffia globosa) acts as an indi-

cator of heavy metal pollutants and is especially sensitive to chromium and

cadmium. In combination with some biochemical markers, many plants can be

identified as good bioindicators including for radioactive elements (Hoseini et al.

2012). For example, ascorbate can be a biomarker for herbicide stress. Plants in

combination with soil pH can also be used as moderate indicators in some

phytoremediation studies. For example, the uptake of the chemical species of

uranium, the uranyl cation (UO2
2+) was observed in Pisum sativum at soil pH 5.

The tepary bean (Phaseolus acutifolius) and red beet (Beta vulgaris) show the

highest accumulation of uranium at pH 6 and 8. This indicates that soil pH is an

interesting influencing factor in phytoremediation processes, at least in the case of

uranium uptake (Ebbs et al. 1998).

19.6.4 Priority-Based Advancement Using a Transgenic
Approach

Many plant species and/or phytoremediator species are classified as first-rate

phytoremediation candidates for non-commercial sites such as homes, where vola-

tile formaldehyde is a big concern. Manipulation of the genetic outcome of a plant

growth-promoting rhizobacterium (PGPR) such as Pseudomonas fluorescens
through transposon mutagenesis (Rajendran et al. 1994), protoplast fusion

(Rajendran and Jayaraman 1994) or electroporation into nitrogen-fixing bacterium

such as Azospirillum lipoferum (Ramalingam and Rajendran 2001) or screening for

mutant clones in carbon tetrachloride-degrading soil bacterium such as

Pseduomonas stuzeri (Sepulveda et al. 1999) makes such soil bacteria more suitable

for association with domesticated plants for remedial applications. Using such

modified rhizobial inhabitants with transgenic remediator plants for higher produc-

tivity makes the process more viable and successful. The advantage of using

engineered plants with chemo-degrading microbial genes is that one can continu-

ously improve plant productivity and elevate them to the next stage. It is also

possible to monitor the efficiency of productivity and the remediation process
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simultaneously with the pathways involved (Stomp et al. 1994). For example,

studies with Cd remediation by transgenic tobacco (Macek et al. 2002a) or the

isolation of a Cd2+-sensitive Cad1 mutant of Arabidopsis thaliana, which is defi-

cient in a peptide called phytochelatin synthetase, demonstrates conclusively the

importance of such engineered approaches for heavy metal tolerance. Similarly,

natural variation in cadmium hyperaccumulation can be assayed in Thlaspi
caerulescents (Roosens et al. 2003). A variety of assays are now available to use

with the model plants Arabidopsis thaliana and Nicotiana tabacum (Heaton et al.

1998) to assesses phytoremediation capability with a modified bacterial mercuric

reductase gene, merA (Rugh et al. 1996), which is capable of converting ionic

mercury and Hg(II) to the less toxic, volatile Hg(O).

19.7 Conclusion

In this chapter, an attempt was made to explain the state of the rhizobial inhabitants

of phytoremediator communities and a number of factors that may potentially

influence plant productivity and the process of remediation. Problems of chemical

contamination and its salvage will continue because of the continuous use of

metals, chemicals and their derivatives in our everyday life in one way or other.

The continuous use of chemicals today will have a profound effect on the environ-

ment and public health tomorrow, which will surpass the current emerging risks. By

coalescing different forms of nature’s bioremediation processes, plants can clean up

a large plume of contaminated soil and/or aquifer sites in association with their

inhabitants. Although it has been recognized for more than 20 years that plants can

be used as a biological clean-up tool for inorganic contaminants, the technology has

not yet been adopted in many counties. This could be due to lack of public

awareness of the potential success and/or even of the real existence of such

technology. There is an urgent need for knowledge on ecosystem restoration

through domesticating a vast group of model hyperaccumulator plants and trees

from the wild, herbarium collections and taxonomic literatures. The success of this

process demands a multidisciplinary approach, because the precise mechanisms for

the removal of contaminants of concern and the complex survival ability of the

plants are still not fully understood and necessarily depend on a multidisciplinary

approach. Hence, it is appropriate to start with selection of novel remediator plants

and combine this with environmental engineering for in-situ remediation studies. It

is therefore important to incorporate traditional tissue culture with nanobiological

approaches and genetic engineering tools to enable the plant to metabolize a

particular toxic pollutant. Currently, many interdisciplinary terms are being

introduced and potential applications are being employed in phytoremediation.

More understanding is needed on hyperaccumulator plants and incorporation of

genes into the plant growth-promoting bacteria (PGPR) for synergistic

phytoremediation. Improved methods for recycling the remediator plants them-

selves are necessary to make phytoremediation more economically and

490 N. Rajendran



commercially viable. In the near future, phytoremediation might become an inte-

gral part of environmental management.
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