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Aromatic weapons: truffles 
attack plants by the 
production of volatiles

 

Truffles, fungal species belonging to the genus 

 

Tuber

 

, include
ectomycorrhizal species highly appreciated for their aroma.
More than a hundred volatile organic compounds (VOCs)
have been isolated from the fruiting bodies and mycelia of
truffles (Zeppa 

 

et al

 

., 2004; Splivallo 

 

et al

 

., in press), and from
ectomycorrhizal roots (Menotta 

 

et al

 

., 2004). In this issue of

 

New Phytologist

 

, Splivallo 

 

et al

 

. (pp. 417–424) demonstrate the
first biological activity for truffle VOCs. These volatiles cause
rapid and efficient leaf bleaching and root inhibition of

 

Arabidopsis thaliana

 

 and are therefore regarded as phytotoxic
compounds. These findings suggest that truffle volatiles may
play a role in ‘burnt formation’, inhibition of herbaceous
plants by truffles (Pacioni, 1991).

 

‘It can therefore be imagined that many more VOC-

related inter- and intraorganismic interactions exist

 

than previously thought.’

 

The importance of volatiles was underestimated in the past,
but recently a series of interesting new findings have focused
attention on these low-molecular-weight compounds with high
vapour pressure. They are necessary for inter- and intraorganismic
communication. Apparent VOC producers and receivers (e.g.
flowers and pollinators, and male and female animals) have
been investigated. However, it is necessary to reconsider the
fact that, in principle, all living organisms have the potential
to synthesize, emit and receive volatile compounds. It can
therefore be imagined that many more VOC-related inter- and
intraorganismic interactions exist than previously thought.

 

Microbial volatiles modulating plant physiology

 

Plants produce and emit diverse mixtures of VOCs which
play key roles in above-ground and underground plant
development and in plant–microbe and plant–insect interactions.
Extensively investigated volatile signals of plants include

methyl esters of the phytohormones jasmonic acid and salicylic
acid, ethylene, terpenoids, and six-carbon volatiles (Pichersky

 

et al

 

., 2006; Tholl 

 

et al

 

., 2006). In contrast, the influence of
microbial volatiles on plant physiology is only beginning to
be understood. Ryu 

 

et al

 

. (2003, 2004) demonstrated that
2,3-butanediol and acetoin synthesized and emitted by plant
growth-promoting 

 

Bacillus

 

 strains enhance growth and induce
systemic resistance of 

 

A. thaliana

 

. In truffles, Splivallo 

 

et al

 

.
observed that, depending on the 

 

Tuber

 

 species, fungal volatiles
caused bleaching of 

 

A. thaliana

 

 leaves, and/or inhibition of
root and leaf development. The finding that the truffle host
plant 

 

Cistus incanus

 

 was similarly inhibited to 

 

A. thaliana

 

indicates a rather widespread action profile for the volatiles.
More importantly, these results raise the question of what
possible role(s) these volatiles play in ecosystems, and whether
they are indeed responsible for the formation of plant inhibitory
zones (‘burnts’). That not only fungal, but also rhizobacterial
volatiles can cause dramatic growth inhibitory effects on

 

A. thaliana

 

 was recently demonstrated by Vespermann 

 

et al

 

.
(in press; Fig. 1). The volatile profiles of the rhizobacteria
differ very much in qualitative and quantitative complexity;
however, many compounds could not be identified, indicating
that they comprise a new source of potential antibiotic
compounds (Kai 

 

et al

 

., 2007). In contrast, many truffle
volatiles could be identified and individual compounds
such as 

 

trans

 

-2-octenal, 3-octenol and 1-octen-3-ol induced
bleaching and root growth inhibition (Splivallo 

 

et al

 

., in
press). Interestingly when considering its biological activity,
1-octen-3-ol is responsible for the typical smell of fungi and
thus is commonly found in the volatile blends of mushrooms.
This compound together with 

 

trans

 

-2-octenal led to a burst
of hydrogen peroxide (H

 

2

 

O

 

2

 

) and to a significant increase of
reactive oxygen species (ROS)-related enzyme activities in

 

A. thaliana

 

.
Before the current work of Splivallo 

 

et al

 

. with truffles, the
phytohormone ethylene was the only characterized fungal
VOC with implications in fungus–plant interactions. 

 

Botrytis
cinerea

 

 is able to produce ethylene 

 

in vitro

 

, and the emission
of ethylene follows the pattern that is associated with hyphal
growth (Cristescu 

 

et al

 

., 2002). The possibility of 1-octen-3-
ol–ethylene cross-talk would certainly be worth investigat-
ing in 

 

A. thaliana

 

, as one of the functions of ethylene in
plants is to adjust the release of H

 

2

 

O

 

2

 

 and other ROSs
(Overmyer 

 

et al

 

., 2000).

 

Microbial volatiles and mycorrhizal symbiosis

 

The consequences of volatile production by bacteria for the
target fungi are manifold; the volatiles affect the growth rate



 

Commentary

 

New Phytologist

 

 (2007) 

 

175

 

: 381–383

 

www.newphytologist.org

 

© The Authors (2007). Journal compilation © 

 

New Phytologist

 

 (2007)

 

Forum382

 

and the development of fungal mycelium and sclerotia, and
lead to conidia deformation and discoloration (Wheatley,
2002; Kai 

 

et al

 

., 2007). Most interest has been focused on
the influence of fungal and bacterial volatiles on the mycelial
growth of mycorrhizal fungi. Saprophytic fungi may cause
growth depression in mycorrhizal fungi; for example,

 

Trichoderma pseudokoningii

 

 volatiles inhibit 

 

Gigaspora rosea

 

spore germination and mycorrhiza establishment in soybean
(

 

Glycine max

 

) (Martinez 

 

et al

 

., 2004). In contrast, spore
germination and hyphal growth of 

 

Glomus mosseae

 

 were
promoted by the volatiles of soil yeasts (Sampedro 

 

et al

 

.,
2004). This positive effect of yeast volatiles warrants further
investigation. Bacterial volatiles, for example from 

 

Streptomyces

 

spp., have been shown to promote the germination of

 

G. mosseae

 

 spores (Tylka 

 

et al

 

., 1991), and, depending on
the fungal species, volatiles produced by mycorrhiza helper
bacteria may either promote or inhibit mycelial growth (Garbaye
& Duponnois, 1992). Direct contact among 

 

Paenibacillus

 

sp. EJP73, 

 

Lactarius rufus

 

 and Scots pine (

 

Pinus sylvestris

 

)
leads to accelerated mycorrhiza development. Using laboratory-
based microcosms, Aspray 

 

et al

 

. (2006) observed that volatile
production by 

 

Paenibacillus

 

 sp. separated from plant roots
led to inhibition of symbiosis development. These somewhat
contradictory results reflect the general challenge of volatile
application studies. Similarly, Barbieri 

 

et al

 

. (2005) were able
to analyse 65 volatiles produced by 

 

Staphylococcus pasteuri

 

,
an antagonist of 

 

Tuber borchii

 

, while in 

 

S. pasteuri–T. borchii

 

cocultures the spectrum of VOCs was distinct from that of
the respective pure cultures. The terpenoid 

 

γ

 

-pachoulene, a
compound that was only produced in dual cultures, was
linked to antifungal activity. Currently, no volatile profiles of
the tri-trophic 

 

S. pasteuri–T. borchii

 

–host plant interaction
are known.

 

Perspectives

 

From the increasing evidence accumulating in the literature,
it has to be concluded that multifunctional and multiorganismic
volatile-based interactions exist in ecosystems, probably to a
greater extent than has been envisioned. In the light of the
observations of Splivallo, Vespermann, Ryu and colleagues
showing that truffle or rhizobacterial VOCs directly influence
plants (including host plants), one possible next step would
be to expand investigations to other potential partners in the
interaction; for example, to test how the truffle volatiles
influence mycorrhiza development (Menotta 

 

et al

 

., 2004) or
how rhizobacterial volatiles influence the soil ecosystem by
studying volatile-dependent interactions between phytopatho-
genic fungi, plants, nematodes, etc. In this context, the
volatiles of mycorrhiza helper bacteria and mycorrhiza-
associated fungi can now be seen from a new perspective
regarding symbiosis establishment. A more specific question
relates to the ecological relevance of the truffle volatile–host
plant interaction: are the bioactive volatiles responsible for

Fig. 1 Influence of rhizobacterial volatiles on the growth of 
Arabidopsis thaliana exposed to airborne chemicals released from 
growth-promoting Bacillus subtilis and growth-inhibiting 
Pseudomonas fluorescens strains. Figure courtesy of M. Kai, 
University of Rostock, Germany.
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the inhibition of herbaceous plants in nature? Such questions
can now be addressed, for example, by relating VOC dose–
plant responses to measurements within microcosms. The
rapid development of analytical methods and the ever-
increasing number of accessions in molecular mass databases,
together with the use of model organisms, suggest that we
have a realistic chance of taking a leap forward in our
understanding of the role of volatiles in microbe–plant
interactions in the near future.
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Drought and symbiosis – why 
is abscisic acid necessary for 
arbuscular mycorrhiza?

Plant hormones are prime targets when addressing the
regulation of such an intimate plant–microbe interaction as
arbuscular mycorrhiza (AM), which is found in nearly 80%
of all plant species. Besides the most important feature of
the mutualistic symbiosis – AM fungal provision of mineral
nutrients in return for plant carbohydrates – the colonization
of a plant root by AM fungi often improves growth and stress
tolerance of the whole plant (Linderman, 2000). Alterations
in the homeostasis of plant hormones have been implicated
in this process and there are a large number of publications
showing that the levels of plant hormones such as cytokinin,
jasmonate ( JA), auxin, auxin-related compounds and abscisic
acid (ABA) actually change upon the establishment of AM
(Hause et al., 2007; Fig. 1). Although these findings suggest
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that the beneficial effects of AM are not restricted to an
improved nutrition of the plant, in most cases they do not
provide clear functional proof regarding the importance of
the changes in hormone levels observed. In addition, they
only address the hormonal and physiological consequences
of an established AM symbiosis. The question of a possible
involvement of plant hormones in AM establishment is rarely
in their scope. In this issue of New Phytologist, however,
Herrera-Medina et al. (pp. 554–564) address exactly this
question. By analyzing AM colonization of the tomato
mutant sitiens, in which ABA levels are reduced to only 8%
of those in wild-type tomato plants, they were able to show
that ABA is necessary for the proper formation of arbuscules
(the key symbiotic interface of AM) and for a sustained
colonization of the plant root. The tomato mutant sitiens
exhibits a reduced AM formation, which can be restored
by the application of ABA, correlating with increased
mycorrhization by treatment of wild-type roots with ABA.
In addition, the data presented suggest an antagonistic role
for the plant hormone ethylene (ET).

‘Once the fungus has entered the root our knowledge

on the molecular communication is only fragmentary’

Molecular signals in the AM symbiosis

Despite the striking discoveries in recent years regarding the
molecular communication between plants and AM fungi, it
should be stressed that our knowledge of this communication
is limited. It has been shown that a group of compounds
(strigolactones) exude from the plant root and induce hyphal
branching of AM fungi (Akiyama et al., 2005). Moreover, a
plant signal-transduction cascade, which is initiated by a
receptor-like kinase, clears the way for the entry of AM
fungi into the plant root (Parniske, 2004). Interestingly, this
signaling cascade is partially shared in the plant–rhizobial
and the plant–nematode interactions (Weerasinghe et al.,
2005). This initial signaling is followed by the formation of
a highly specialized transient intracellular structure, designated
the prepenetration apparatus, which is assembled by the
epidermal cell with a novel cytoskeletal organization and
plays a central role in the elaboration of the apoplastic inter-
face compartment for fungal growth (Genre et al., 2005).
However, once the fungus has entered the root, our knowledge
on the molecular communication is only fragmentary. The
publication by Herrera-Medina et al. now adds a new piece
to this puzzle. Similar experiments using a transgenic approach
in Medicago truncatula have shown that the plant hormone
jasmonic acid plays a comparable role for the establishment
of a functional AM symbiosis (Isayenkov et al., 2005). In
addition, a number of plant mutants have been described to
be disturbed in these later steps of the interaction.

ABA in plant–microbe interactions

ABA is well known for its important signaling and regulatory
roles that enable plants to survive a variety of abiotic stresses,
such as drought, salinity and cold stress (Finkelstein &
Rock, 2002). In recent years, ABA has also been implicated
in the regulation of a number of biotic stresses, such as
pathogen attack. Its role, however, seems to depend on the
interacting organisms. An increase in the level of ABA
causes an increased resistance to the bacterial leaf pathogen
Pseudomonas syringae or against viral infection in tobacco,
explained by the induction of stomatal closure or by the
inhibition of callose degradation (Adie et al., 2007). This
contrasts, however, with the reduced susceptibility (enhanced
resistance) of ABA-deficient Arabidopsis or tomato mutants

Fig. 1 Schematic summary of nutritional and hormonal changes 
upon colonization of plants by arbuscular mycorrhiza (AM) fungi 
and of hormonal effects on AM colonization. The picture gives a 
model of a colonized root cortical cell; the cell wall and cytosol have 
been partially removed. The plant cell nucleus is depicted in the 
center of the schematic arbuscule. Nutritional changes are given in 
the upper part of the scheme (the plant receives mineral nutrients 
and water while providing carbohydrates to the fungus) and the 
hormonal changes are given in the lower right part. Plants 
colonized by AM fungi have been described to contain lower levels 
of abscisic acid (ABA), but increased levels of auxin (and auxin-
related compounds such as indolbutyric acid), jasmonate and 
cytokinin. The lower left part gives the observed effects of plant 
hormones on establishment of the AM symbiosis. Apart from the 
positive effect of jasmonate described by Isayenkov et al. (2005), 
the effects of ABA and ethylene are described by Herrera-Medina 
et al. (this issue; pp. 554–564).
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and soybean plants treated with an ABA biosynthesis
inhibitor to various pathogens. The inverse relationship
between the level of ABA and the induction of certain
disease-resistance components led to the assumption that
ABA has an antagonistic interaction with the JA/ET defense
pathway that is necessary for resistance in Arabidopsis to the
necrotrophic pathogen Fusarium oxysporum (Anderson et al.
2004). However, ABA also seems to interfere with signaling
involving salicylic acid, leading to reduced plant resistance
against biotrophic pathogens (Adie et al., 2007). Along these
lines, the effect of ABA treatment of Arabidopsis plants on
the accumulation of two key resistance components after
inoculation with an avirulent strain of P. syringae pv. tomato
demonstrated that ABA is a suppressor of SA and lignin
production and therefore the increase in ABA levels results
in an increased susceptibility to infection (Mohr & Cahill,
2007). Regarding the AM symbiosis, it appears at least
questionable if mechanisms observed in pathogenic interactions
are applicable. Elements of plant defense reactions are
observed only in a very reduced form during this interaction
(Garcia-Garrido & Ocampo, 2002). Nevertheless, cross-talk
with other hormones – at least with JA and salicylate – cannot
be excluded. It will be a great challenge to establish how
different hormones act in AM and whether their synergistic and/
or antagonistic effects determine the outcome of the interaction.

Drought stress and AM

AM fungi not only improve the mineral nutrition of
colonized plants, they also increase their resistance to abiotic
stresses. In particular, drought stress can be alleviated by AM
fungi; indeed, a number of cases have been reported where
the beneficial effects of AM fungi on plant performance
became apparent only under drought stress conditions (Augé,
2001). Although reports are not unanimous on this point,
the beneficial consequences of AM colonization regarding
drought stress seem to contribute not only towards a better
mineral nutrition of plants, but encompass a more direct
improvement of the plant water status. In addition, reduced
levels of ABA and, accordingly, improved photosynthetic
parameters have been described for above-ground parts of
AM plants (Augé, 2001). Given this context, it makes sense
that root ABA is necessary for a sustained colonization by
AM fungi. This might ensure that roots become colonized
particularly strongly when it is most needed (i.e. under
drought stress conditions, when ABA levels are high). A
similar regulatory mechanism has already been hinted at for
phosphate, the main mineral nutrient provided by AM fungi
to plant roots. In this case it has been shown that symbiotic
structures unable to provide this nutrient are quickly
degraded (Maeda et al., 2006; Javot et al., 2007). Many more
experiments will be necessary to prove that plants in the field
really use such mechanisms to engage only in AM interactions
when they actually obtain benefits by these interactions.
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