Effects of Phytoestrogen Extracts Isolated from Pumpkin Seeds on Estradiol Production and ER/PR Expression in Breast Cancer and Trophoblast Tumor Cells

Dagmar Richter
Department of Obstetrics and Gynaecology, University of Rostock, Rostock, Germany

Sibylle Abarzua
Department of Biological Sciences, University of Rostock, Rostock, Germany

Mareike Chrobak
Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany

Thomas Vrekoussis, Tobias Weissenbacher, Christina Kuhn, Sandra Schulze, Markus S. Kupka, and Klaus Friese
Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Innenstadt, Munich, Germany

Volker Briese
Department of Obstetrics and Gynaecology, University of Rostock, Rostock, Germany

Birgit Piechulla
Department of Biological Sciences, University of Rostock, Rostock, Germany

Antonis Makrigiannakis
Department of Obstetrics and Gynecology, Medical School, University of Crete, Greece

Udo Jeschke and Darius Dian
Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Innenstadt, Munich, Germany

Phytoestrogens have a controversial effect on hormone-dependent tumours. Herein, we investigated the effect of the pumpkin seed extract (PSE) on estradiol production and estrogen receptor (ER-α/ER-β)/progesterone receptor (PR) status on MCF7, Jeg3, and BeWo cells. The PSE was prepared and analyzed by mass spectrometry. MCF7, Jeg3, and BeWo cells were incubated with various concentrations of PSE. Untreated cells served as controls. Supernatants were tested for estradiol production with an ELISA method. Furthermore, the effect of the PSE on ER-α/ER-β/PR expression was assessed by immunocytochemistry. The PSE was found to contain both lignans and flavones. Estradiol production was elevated in MCF7, BeWo, and Jeg3 cells in a concentration-dependent manner. In MCF7 cells, a significant ER-α downregulation and a significant PR upregulation were observed. The above results after properly designed animal studies could highlight a potential role of pumpkin seed’s lignans in breast cancer prevention and/or treatment.

BACKGROUND
Phytoestrogens are plant polyphenolic compounds with a molecular structure that closely resembles mammalian estrogens. It has been proven that such compounds can bind to human estrogen receptors exerting both estrogenic and antiestrogenic effects (1). According to their molecular characteristics,
phytoestrogens can be classified into different groups, the most studied of which are isoflavones and lignans.

Isoflavones are found in legumes, with the most common representative being soy and its derivative products, whereas lignans are usually found in seeds and fiber-rich cereals (2). In contrast to isoflavones, which are quite abundant in Asian diet, lignans are the phytoestrogens mostly consumed in Europe (2, 3).

The role of lignans as hormonal compounds has been excessively discussed and to date it is still unclear whether their consumption may lead to beneficial results or not. To this direction, several reports have used lignans either in their isolated form or as product extracts using several in vitro or in vivo models (4), especially in the aim to study their association as well as their effect on hormone-dependent malignancies and mainly breast cancer (5). In addition, lignans are expected to play a potentially crucial role in other hormone-dependent processes in humans, such as reproduction and menopause (6).

Based on the facts mentioned above and having already presented relevant data about the effect of isoflavones and lignans on tumor trophoblast cells (well accepted as a trophoblast model) and on the estrogen receptor positive MCF-7 breast cancer cell line (7–9), we expanded our research to the effect of the pumpkin seed extract (PSE), because pumpkin is very abundant in the North European diet. We have shown that the PSE may alter the hormone receptor profile of the MCF-7 but not of the BeWo and Jeg-3 cells, while at the same time it triggers estradiol production.

MATERIALS AND METHODS

Preparation of the PSE

The PSE, from the species Curcurbita Pepo, was made as previously described (10) and was afterwards dissolved in 100% ethanol. In the aim to verify the previously reported increased lignan concentration in pumpkin seeds (11, 12) the molecular–chemical composition of the extract was further analyzed by pyrolysis-field ionization mass spectrometry by using a LCQ-Advantage (Thermo Finnigan, USA). The peaks were identified by ion trap technology on ESI mode. The source voltage was set at 4.5 KV, while the mass detection range was 50–800 amu.

Cell Lines

For the current work the chorion carcinoma cell lines Jeg-3 and BeWo and the breast carcinoma cell line MCF-7 were used. All cell lines were obtained by the European Collection of Cell Cultures (ECACC, UK)). The cells were grown in DMEM (Biochrom AG, Germany) supplemented with 10% heat-inactivated fetal calf serum (PAA Laboratories GmbH, Austria), 100 µg/ml Penicillin/Streptomycin (Biochrom AG, Germany) and 2.5 µg/ml Amphotericin B (Biochrom AG, Germany). Cultures were maintained in a humidified incubator, at 37°C with a 5% CO₂ atmosphere. Prior to cell culture the presence of estrogen or progesterone in the medium was excluded, by an automated Immulite (DPC Biermann, Freiburg, Germany) hormone analyzer.

Effect of PSE on the Cell Lines

For all the experiments the cells were seeded on Quadrierm tissue slides at the presence or absence of PSE. In brief, cells were seeded at a concentration of 400,000 cells per slide. The cells were left to attach for 24 h. Then, the medium was replaced by medium supplemented with PSE at final effective concentrations of 10, 50, and 100 µg/ml. Because the original PSE was diluted in 100% ethanol, medium supplemented with 100% ethanol at a concentration of 5 µl/ml (this being the maximum ethanol concentration achieved during these experiments) served as internal control. After the cells were cultured for 72 h, 1 ml from each supernatant was stored at −80°C for estradiol analysis. The remaining supernatant was then discarded and the slides were washed in PBS, fixed in acetone for 10 min, and let to dry in room temperature. Cells treated with equal concentrations of estradiol (10, 50, and 100 µg/ml) served as external controls.

Estradiol Determination in the Cell Culture Medium

For the determination of estradiol in the culture medium, a competitive enzyme immuno-assay (EIA) was applied as described previously (13). Determination was performed by an automated Immulite 2000 (DPC Biermann, Freiburg, Germany) hormone analyzer.

Immunocytochemistry for ER-α, ER-β, and PR

For immuno-detection of the steroid receptors ER-α, ER-β, and PR, the Vectastain® Elite ABC-kit (Vector Laboratories, USA) was used according to manufacturer’s protocol. After been air dried, the slides were rinsed in PBS for 5 min and incubated with the ABC normal serum for 60 min in a humidified environment. The slides were then washed and incubated with the respective primary antibodies. Salient features of the antibodies used are presented in Table 1. The slides were then incubated with the diluted biotinylated secondary antibody (30 min), followed by incubation with the ABC reagent (30 min), and the ABC substrate (15 min). A PBS wash (5 min) was applied between steps. Finally, the slides were counterstained with Mayer’s acidic hematoxylin (30 sec), rinsed with water and covered with Aquatex.

The intensity and distribution patterns of the specific immunocytochemical staining was evaluated using a semiquantitative method (IRS score) as previously described (14). Briefly, the IRS score was calculated as the product of the optical staining intensity (0 = no staining; 1 = weak staining; 2 = moderate staining; and 3 = strong staining) multiplied by the graded staining extent (0 = no staining; 1 = <10% staining; 2 = 11–50% staining; 3 = 51–80% staining and 4 = >80% staining). The percentage of positively stained cells was estimated by counting approximately 100 cells.
TABLE 1

<table>
<thead>
<tr>
<th>Antibody (source)</th>
<th>Origin</th>
<th>Dilution in PBS</th>
<th>Incubation</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-ERα (Dako, Germany)</td>
<td>Mouse monoclonal</td>
<td>1:150</td>
<td>1h</td>
<td>RT</td>
</tr>
<tr>
<td>Anti-ERβ (Serotec, Germany)</td>
<td>Mouse monoclonal</td>
<td>1:600</td>
<td>O/N</td>
<td>4°C</td>
</tr>
<tr>
<td>Anti-PR (Dako, Germany)</td>
<td>Mouse monoclonal</td>
<td>1:50</td>
<td>1h</td>
<td>RT</td>
</tr>
</tbody>
</table>

ER = estrogen receptor; PR = progesterone receptor; nO/N = overnight; RT = room temperature.

MTT Assay

To quantify the effect of the PSE on the MCF-7 cell population, the MTT assay was performed. Briefly, 10⁵ cells/well were allowed to attach on Quadriperm tissue culture slides and then were treated with 10 µg/ml, 50 µg/ml, or 100 µg/ml of PSE for 72 h. Controls were set as described above. The cells were then treated according to the MTT assay protocol, as previously described (15).

Statistical Analysis

All experiments were performed in triplicates. Statistical analysis was performed using the Wilcoxon’s signed rank tests for pair wise comparisons. Each observation with \(P < 0.05 \) was considered statistically significant.

RESULTS

Identification of Phytoestrogens in the PSE

The mass spectrometry results showed that the PSE contains phytoestrogens. Indeed it was found that the PSE contained 1) lignans (secoisolariciresinol, matairesinol, and arctigenin) and 2) flavonoids (Genistin, Daidzin, Formononetin, and Quercetin). There was a trend for lignans to be more abundant in the PSE, compared to isoflavones. In addition, the PSE contained other phenolic compounds, as well as lipids and isoprenoids like sterols, terpenes, and carotenoids (Table 2). Despite the established knowledge that pumpkin seeds contain mainly lignans and especially secoisolariciresinol (11, 12, 16), and the initial trend for higher lignan concentrations compared to isoflavones, quantification was technically impossible due to the presence of extremely high amounts of unsaturated and saturated fatty acids and di/triglycerides (80% w/w). With such high concentrations of these compounds, a safe evaluation of the phytoestrogenic content is rather not feasible. The lack of quantification of PSE compounds did not affect the study design, the initial aim of which was to evaluate the effect of the crude extract and not of each of its ingredients separately.

PSE Induces Estradiol Secretion by Jeg-3, BeWo, and MCF-7 Cells in a Dose-Response Pattern

All 3 cell lines were cultured for 72 h in the presence of different concentrations of PSE. The estradiol concentration in the medium was determined by an automated hormone analyzer by applying a competitive EIA. As shown in Fig. 1, estradiol production is significantly induced in a dose-response pattern. In Jeg-3 cells, the estradiol production was increased from 1065.01 ± 22.22 pg/ml in the control to 1674.48 ± 30.34 pg/ml, 5215.62 ± 82.35 pg/ml, and 7275.89 ± 439.48 pg/ml when the PSE concentration was 10, 50, and 100 µg/ml, respectively (\(P < 0.05 \)). To the same direction, in BeWo cells, the estradiol production was increased from 245.25 ± 16.25 pg/ml in the control to 315.75 ± 25.03 pg/ml, and 3586.93 ± 134.02 pg/ml when the PSE concentration was 10, 50, and 100 µg/ml, respectively (\(P < 0.05 \)). Finally, in MCF-7 cells, the estradiol production was increased from 131.42 ± 2.21 pg/ml in the control to 174.24 ± 4.06 pg/ml, and 1487.47 ± 45.32 pg/ml when the PSE concentration was 10, 50, and 100 µg/ml, respectively (\(P < 0.05 \)).

TABLE 2

<table>
<thead>
<tr>
<th>Pumkin seed extract composition (qualitative analysis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phytoestrogens</td>
</tr>
<tr>
<td>- Secosolariciresinol</td>
</tr>
<tr>
<td>- Matairesinol</td>
</tr>
<tr>
<td>- Arctigenin</td>
</tr>
<tr>
<td>Flavonoids</td>
</tr>
<tr>
<td>- Genistin</td>
</tr>
<tr>
<td>- Daidzin</td>
</tr>
<tr>
<td>- Formononetin</td>
</tr>
<tr>
<td>- Quercetin</td>
</tr>
<tr>
<td>Carbohydrates</td>
</tr>
<tr>
<td>Phenole and lignin monomers</td>
</tr>
<tr>
<td>Lignin dimers</td>
</tr>
<tr>
<td>Lipids, alkenes, alkanes, fatty acids, n-alkylesters</td>
</tr>
<tr>
<td>Alkyl aromatic compounds</td>
</tr>
<tr>
<td>N-containing compounds</td>
</tr>
<tr>
<td>Steroles, terpenes, carotenoids</td>
</tr>
<tr>
<td>Peptides and aminoacids</td>
</tr>
<tr>
<td>Suberin</td>
</tr>
<tr>
<td>Free saturated or unsaturated fatty acids (n-C16 to n-C34)</td>
</tr>
<tr>
<td>Low molecular weight compounds (MW 15–56)</td>
</tr>
<tr>
<td>Di- and Triglycerides</td>
</tr>
</tbody>
</table>

Identification of Phytoestrogens in the PSE

The mass spectrometry results showed that the PSE contains phytoestrogens. Indeed it was found that the PSE contained 1) lignans (secoisolariciresinol, matairesinol, and arctigenin) and 2) flavonoids (Genistin, Daidzin, Formononetin, and Quercetin). There was a trend for lignans to be more abundant in the PSE, compared to isoflavones. In addition, the PSE contained other phenolic compounds, as well as lipids and isoprenoids like sterols, terpenes, and carotenoids (Table 2). Despite the established knowledge that pumpkin seeds contain mainly lignans and especially secoisolariciresinol (11, 12, 16), and the initial trend for higher lignan concentrations compared to isoflavones, quantification was technically impossible due to the presence of extremely high amounts of unsaturated and saturated fatty acids and di/triglycerides (80% w/w). With such high concentrations of these compounds, a safe evaluation of the phytoestrogenic content is rather not feasible. The lack of quantification of PSE compounds did not affect the study design, the initial aim of which was to evaluate the effect of the crude extract and not of each of its ingredients separately.
FIG. 1. Estradiol concentration in the tissue culture medium of Jeg3, BeWo, and MCF7 cells in the absence or presence of pumpkin seed extract. The effective pumpkin seed extract concentrations were 10, 50, and 100 µg/ml. Significant observations are highlighted with an asterisk.

PSE Downregulates ER-α and Upregulates PR in the MCF-7 Breast Cancer Cell Line

Jeg-3, BeWo, and MCF-7 cell lines were immunocytochemically assessed for ER-α, ER-β, and PR reactivity, after a 72-h culture in the presence of different concentrations of the PSE.

As shown in Fig. 2A and 2B, there was a significant decrease in ER-α expression in the MCF-7 cells, in a dose-response pattern, with an IRS score being reduced from 10 ± 0.98 in the controls to 0.5 ± 0.24, 0.16 ± 0.18, and 0 ± 0 when the PSE concentration was 10, 50, and 100 µg/ml, respectively (P < 0.05). On the contrary, there was a significant upregulation in the PR expression in the MCF-7 cells with an IRS score being increased from 2.33 ± 0.36 in the control to 8.83 ± 0.71, 8.66 ± 0.73, and 6.5 ± 0.54, when the PSE concentration was 10, 50, and 100 µg/ml, respectively (P < 0.05). However the PR upregulation did not present a dose-response pattern. No statistical difference was observed in MCF-7 cells regarding ER-β expression when cultured in the presence or absence of PSE (data not shown).

MCF-7 cells treated with equal concentrations of estradiol (10, 50, and 100 µg/ml) revealed the same pattern of ER and PR expression; ERα expression was significantly downregulated, ERβ expression remained unaltered, and PR expression was upregulated (Fig. 3).

The ER-α, ER-β, and PR expression levels in Jeg-3 and BeWo cells did not differ significantly in the presence or absence of PSE (data not shown).

Only Low or Moderate (10 µg/ml or 50 µg/ml) PSE Concentrations Upregulate MCF-7 Proliferation

The effect of PSE on MCF-7 breast cancer cell proliferation was biphasic. When treated with 10 µg/ml or 50 µg/ml PSE, the MCF-7 proliferation rate was significantly increased (P < 0.05). On the contrary, increased concentrations of PSE (100 µg/ml) did not seem to affect cell proliferation (P > 0.05) (Fig. 3).

DISCUSSION

Herein, the effect of the PSE on BeWo, Jeg3, and MCF7 cell lines regarding estrogen and PRs was assessed. To our knowledge this is the first time that such an effect of the PSE is investigated and thus we consider this study a pilot.

In pilot studies, the use of an extract like the PSE is considered better than investigating isolated compounds, in that case phytoestrogens. This is supported initially by the thesis that crude extracts are better simulators of the real effect, because in real life people consume foods rather than isolated compounds. To the same direction it has been shown that the processed isoflavones may trigger MCF7 growth, whereas the soy flour that served as the initial source of them did not (17, 18). The PSE used herein, was proved to contain lignans, flavones, as well as other compounds (presented in Table 2). A trend for higher lignan concentrations was found by mass spectrometry. However, because fatty acids and di-/triglycerides constituted 80% of the PSE, a safe evaluation of the phytoestrogenic content was not feasible. However based on the current evidence upon pumpkin seed phytoestrogen content (11, 16), we could speculate that the results could be mainly attributed to lignans. Further studies with isolated fractions of the PSE could clarify whether this is exclusively a single lignan or, less possibly, isoflavone effect or even a result of multiple synergies. The role of the other compounds present in the PSE needs also to be elucidated.

A matter of discussion is also the concentrations used and how these could be attributed to a possible diet intake in real life. This issue at the moment is rather difficult to clarify, because phytoestrogen intake varies significantly between individuals. However, high phytoestrogen concentrations may be achieved by constant intake of relevant foods (reported almost up to 3 µM in serum) (19). In this context, the concentrations of the PSE extract used in the present study are considered realistic.
An additional argument regarding the experimental setup of the current study is the possible use of a steroid receptor (ER/PR) negative cell line as a control. Such cell line would perhaps reveal non-estrogenic effects of the PSE; however our main aim was to clarify the possible impact of the PSE on ER/PR expression. Such clarification cannot be done by using ER/PR negative cell lines.

A previous report of our group has presented that two common isoflavones (daidzein and genistein) induce estradiol production on BeWo and Jeg3 tumour trophoblast cells (9). Our findings indicate that the PSE (containing lignans as phytoestrogens) seems to have the same effect on these cell lines regarding estradiol production. However, a deregulated estrogen production by the trophoblast may imply placenta dysfunction and thus could lead to unfavorable results regarding the ongoing gestation (20).

A significant increase of E2 production was also found when MCF7 cells were treated with the PSE. Although, it has been shown that phytoestrogens inhibit the peripheral aromatase activity, thus blocking the transformation of androgens to estrogen (4), recent evidence exist showing that in a breast cancer model at least genistein may increase aromatase activity thus enhancing a local estradiol profile (21). Because MCF-7 cells do not
seem to spontaneously express aromatase (22), we hypothesize that the increased estradiol production by the MCF7 cells could be attributed either to an induction of aromatase expression or by an increased 17β-HSD1 activity (reducing E1 to E2) triggered by the PSE extract. Especially the sulphatase/17β-HSD1 pathway has been reported as equally important to estradiol production (23), contributing to the high local estradiol excess mainly seen in postmenopausal women (24). Further experiments toward assessment of possible induction of aromatase expression as well as assessment of the 17β-HSD1 activity are definitely needed to clarify the exact mechanism by which PSE up-regulates estrogen production.

It was also shown that PSE induced a significant downregulation of the ER-α in the MCF7 breast cancer cell line, while at the same time ER-β expression was unaffected. This alteration, if still holds in humans, seems to be rather protective in the view of breast cancer cell growth; it has been reported that ER-β is associated with breast cell growth inhibition, both by independent ER-β actions and by negative regulation of the ER-α pathways (25, 26). Our current findings partially concur with a previously described downregulation of ER-α on the MCF7 cells, when treated with flav isoflavone and lignan extracts or mixtures (27, 28). However, in the case of flav extracts, such a downregulation was achieved only with high concentrations of phytoestrogens that are unlikely to be achieved by an increased phytoestrogen intake, whereas PSE seems to achieve the same effect at more feasible concentrations. Interestingly, isolated secoisolariciresinol—being present in the PSE as well—was found among others to decrease ER-α expression, using a model of MCF7 cell tumors in ovariectomized athymic mice (29).

On the other hand, it was shown that PSE induces a significant increase in progesterone receptors in the MCF7 breast cancer cell line. Such an increase though cannot be considered clearly as either beneficial or not against breast cancer cell growth, as the role of progestins’ actions in the breast is controversial. Recently, by using an animal model it was described that soy protein isolate may increase PR-A expression in MCF7 cell tumors and decrease apoptosis of ductal naked epithelium, leading to more aggressive tumors (30). Further in vitro experiments revealed that progestins protect T47D breast cancer cells from serum deprivation- as well as from doxorubicin- and 5FU-induced apoptosis (31). On the contrary, while progestins reduced the apoptotic rate of normal MCF10A breast cells in vitro, at the same time progestins partially reversed the initial estrogen-induced low apoptotic rate in breast cancer cells (32).

The protective role of lignans against breast cancer development is well accepted, especially in case of high lignan intake (5). Flaxseed lignans were also reported to decrease cell proliferation and c-erbB2 expression and increase apoptosis in breast cancer patients receiving lignans for the period between diagnosis (biopsy) and surgical treatment (33). Finally isolated secoisolariciresinol is accounted for reduced MCF7 tumor cell growth both in vitro (cell culture) and in vivo (ovariectomized mouse model) (15, 29).

By taking into account the effects of phytoestrogens on breast cancer cells, as presented herein, the protective role of phytoestrogens in breast cancer could be questioned. Our results show an increased production of estrogen by MCF7 cells, although a downregulation of ERα was noted. Increased local and circulating estrogen concentrations are certainly considered as a disadvantage in treating breast cancer. This effect in case of phytoestrogen administration is counterbalanced by the profound downregulation of ERα. Thus, this excess of estrogen is rather unable to trigger ERβ-mediated tumor cell proliferation. On the contrary, because we showed that ERβ expression remains unaffected by phytoestrogen, it could be hypothesized that both phytoestrogens and the increased estrogenic concentrations triggered by them, may exert ERβ-mediated effects. In that view phytoestrogens could be related to a reduced tumor cell proliferation possibly explaining their suggested protective effect on breast cancer.

Because PSE presented as having a dual role on MCF7 cells, the results and the conclusions made must be taken into consideration with caution, especially nowadays that phytoestrogens are gaining constantly ground in the market. After all, this is a pilot study on cell lines and thus further experiments should be made: 1) isolation of fractions from PSE containing lignans to verify whether the initial result can still be attributed to lignans, 2) study of the effect of the PSE on breast cancer cells’ aromatase and 17β-HSD1 activity, and 3) study of the effect of the PSE on animal models, to clarify better an overall inhibitory—or not—role for the PSE in breast cancer.

We believe that in that view the PSE is a good candidate for further research with a potential role in breast cancer prevention and/or treatment, after properly designed studies.

ACKNOWLEDGMENT

Dagmar Richter, Sibylle Abarzua, and Mareike Chrobak all contributed equally to this work.

REFERENCES

11. Sicilia T, Niemeyer HB, Honig DM, and Metzler M: Identification and

10. Luyengi L, Suh N, Fong HH, Pezzuto JM, and Kinghorn AD: A lignan

15. Theil C, Briese V, Gerber B, and Richter DU: The effects of different lignans

14. Remmele W and Stegner HE: Recommendation for uniform definition of

20. Bonagura TW, Pepe GJ, Enders AC, and Albrecht ED: Suppression of

21. van Duersen MB, Nijmeijer SM, de Moree ES, de Jong PC, and van

25. An J, Tzagarakis-Foster C, Scharschmidt TC, Lonri N, and Leitman DC:

29. Saggar JK, Chen J, Corey P and Thompson LU: The effect of secoisolari-

cresinol digluco and flaxseed oil, alone and in combination, on MCF-7

32. Seeger H, Rakov V, and Mueck AO: Dose-dependent changes of the ratio

33. Thompson LU, Chen JM, Li T, Strasser-Weippl K and Goss PE: Dietary

35. Richter DU, Mylonas I, Toth B, Scholz C, Breise V, et al.: Effects of phy-

toestrogens genistein and daidzein on progesterone and estrogen (estradiol)

37. Saggar JK, Chen J, Corey P and Thompson LU: The effect of secoisolari-

cresinol digluco and flaxseed oil, alone and in combination, on MCF-7

39. Saggar JK, Chen J, Corey P and Thompson LU: The effect of secoisolari-

cresinol digluco and flaxseed oil, alone and in combination, on MCF-7

40. Luyengi L, Suh N, Fong HH, Pezzuto JM, and Kinghorn AD: A lignan

41. Sicilia T, Niemeyer HB, Honig DM, and Metzler M: Identification and

42. Effects of phytoestrogen extracts isolated from rye, green and yellow pea

43. Theil C, Breise V, Gerber B, and Richter DU: The effects of different lignans

44. Remmele W and Steiner HE: Recommendation for uniform definition of an

45. Gossell-Williams M, Lyttle K, Clarke T, Gardner M, and Simon O: Sup-

